Supporting Information for

Gold nanorod impact on mechanical properties of stretchable hydrogels

Jacob G. Turner, Jun Hyup Og, and Catherine J. Murphy

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States

1. Supplementary Table

	Table S1. Summary of mechanical testing results for Na-alginate/PAAm hydrogels	3
	Table S2. Statistical significance for Na-alginate/PAAm Young's modulus results	3
	Table S3. Young's modulus results for Ca-alginate/PAAm hydrogels	4
2. S	Supplementary Figures	
	Figure S1. TEM images of AuNRs	5
	Figure S2. ζ -potentials of AuNRs	5
	Figure S3. ATR-FTIR of Na-alginate/PAAm hydrogel	6
	Figure S4. Representative photograph of synthesized hydrogels with AuNRs	6
	Figure S5. Measurement setup for UV-vis polarization measurements	7
	Figure S6. Stress vs strain curves for CTAB and PEG-SH Na-alginate/PAAm hydrogels	7
	Figure S7. Stress versus elongation % for hydrogels without AuNRs	8
	Figure S8. Stress versus elongation % for hydrogels with CTAB AuNRs	9
	Figure S9. Stress versus elongation % for hydrogels with PEG-SH AuNRs	10
	Figure S10. Stress versus elongation % for hydrogels with MUA AuNRs	11
	Figure S11. Stress vs strain curves for PEG-SH and MUA Ca-alginate/PAAm	
hyd	rogels	12
	Figure S12. Polarized UV-vis spectra for AuNR hydrogels at varying stretch lengths	12

3. References			
	Figure S19. TEM images of AuNR alignment in hydrogels	16	
	Figure S18. AuNR alignment reversibility for 1.0 nM MUA AuNR hydrogels	15	
	Figure S17. AuNR alignment reversibility for 0.1 nM MUA AuNR hydrogels	15	
	Figure S16. AuNR alignment reversibility for 1.0 nM PEG-SH AuNR hydrogels	14	
	Figure S15. AuNR alignment reversibility for 0.1 nM PEG-SH AuNR hydrogels	14	
	Figure S14. AuNR alignment reversibility for 1.0 nM CTAB AuNR hydrogels	13	
	Figure S13. AuNR alignment reversibility for 0.1 nM CTAB AuNR hydrogels	13	

1. Supplementary Tables

AuNR Surface Chemistry	AuNR Concentration (nM)	Young's Modulus (kPa)	Maximum Elongation %	
N/A	0.0	3.83 ± 0.50	2,040 ± 310	
СТАВ	0.1	3.67 ± 0.05	2,153 ± 560	
CTAB	0.5	3.46 ± 0.34	1,600 ± 620	
CTAB	1.0	2.83 ± 0.14	2,130 ± 480	
CTAB	2.0	2.76 ± 0.40	2,200 ± 460	
PEG-SH	0.1	3.64 ± 0.09	1,950 ± 590	
PEG-SH	0.5	3.50 ± 0.30	1,270 ± 240	
PEG-SH	1.0	2.79 ± 0.05	2,710 ± 690	
PEG-SH	2.0	2.66 ± 0.31	2,130 ± 500	
MUA	0.1	3.64 ± 0.10	3,545 ± 350	
MUA	0.5	3.43 ± 0.22	3,051 ± 770	
MUA	1.0	2.79 ± 0.08	3,567 ± 730	
MUA	2.0	2.58 ± 0.33	2,675 ± 210	

Table S1: Summary of Na-alginate/PAAM hydrogel mechanical testing results for each type of AuNR hydrogel synthesized. The Young's modulus and elongation results for the hydrogel without AuNRs was comparable to what was previously reported.¹

CTAB	0.1 nM	0.5 nM	1.0 nM	2.0 nM		PEG-SH	0.1 nM	0.5 nM	1.0 nM	2.0 nM
0.0 nM	0.4905	0.0718	0.0003	0.0003		0.0 nM	0.4660	0.0997	0.0020	0.0010
0.1 nM		0.2042	0.0001	0.0010		0.1 nM		0.3924	0.0001	0.0005
0.5 nM			0.0025	0.0061		0.5 nM			0.0003	0.0005
1.0 nM				0.7215		1.0 nM				0.3817
			MUA	0.1 nM	0.5 nM	1.0 nM	2.0 nM			
			0.0 nM	0.4158	0.0425	0.0002	0.0001			
			0.1 nM		0.0726	0.0001	0.0001			
			0.5 nM			0.0001	0.0001			
			1.0 nM				0.1857			

Table S2: Calculated p-values to determine statistical significance between the Young's modulus values of various AuNR concentrations for each surface chemistry tested. The p-values are listed in the table with colors (green) corresponding to a statistically significant difference and (red) corresponding to not statistically different.

AuNR Surface Chemistry	AuNR Concentration (nM)	Young's Modulus (kPa)
N/A	0.0	64 ± 19
CTAB	0.1	83 ± 13
CTAB	1.0	38 ± 6 *
PEG-SH	0.1	81 ± 16
PEG-SH	1.0	86 ± 13
MUA	0.1	85 ± 30
MUA	1.0	84 ± 2 *

Table S3: Young's modulus values for Ca-alginate/PAAm hydrogels. *Denotes values that are statistically different (p < 0.05) than the hydrogel sample without AuNRs.

2. Supplementary Figures

Figure S1: TEM images of AuNRs with varying surface chemistries. (A) CTAB (B) PEG-SH and (C) MUA. Scale bars are 100 nm.

Figure S2: Zeta – potential results for the three different surface chemistries tested.

Figure S3: ATR-FTIR of Na-alginate/PAAm hydrogel. Sample was prepared by lyophilizing hydrogel and then grinding into a powder. Peak at 1284 cm⁻¹ is the C-N stretching of the secondary amide formed between the alginate chains and polyacrylamide.² (1658 cm⁻¹: C = O stretching, 1604 cm⁻¹: N-H deformation, 1418 cm⁻¹: C-N stretching, 1348 cm⁻¹: C-H deformation, 1320 cm⁻¹: C-H deformation, 1124 cm⁻¹: NH₂ in-plane rocking, 1092 cm⁻¹: C-O stretching, 1028 cm⁻¹: C-O stretching).

Figure S4: Photograph of a representative batch of synthesized Na-alginate/PAAm hydrogels with AuNRs.

Figure S5: Measurement setup for UV-vis polarization measurements. Polarizer was placed between the light source and the aperture; the hydrogel was attached to the aperture plate in a stretched or unstretched position such that the hydrogel sample was completely covering the aperture.

Figure S6: Averaged stress versus strain curves obtained from DMA for (A) CTAB AuNR Naalginate/PAAm hydrogels and (B) PEG-SH AuNR Na-alginate/PAAm hydrogels. The solid line is the average of multiple curves and the dotted line is the standard error in the average curve.

Figure S7: Stress versus elongation percentage (normalized elongation length) for Naalginate/PAAm hydrogels without AuNRs.

Figure S8: Stress versus elongation percentage (normalized elongation length) for Naalginate/PAAm hydrogels with (A) 0.1 nM CTAB AuNRs and (B) 0.5 nM CTAB AuNRs (C) 1.0 nM CTAB AuNRs (D) 2.0 nM CTAB AuNRs.

Figure S9: Stress versus elongation percentage (normalized elongation length) for Naalginate/PAAm hydrogels with (A) 0.1 nM PEG-SH AuNRs and (B) 0.5 nM PEG-SH AuNRs (C) 1.0 nM PEG-SH AuNRs (D) 2.0 nM PEG-SH AuNRs.

Figure S10: Stress versus elongation percentage (normalized elongation length) for Naalginate/PAAm hydrogels with (A) 0.1 nM MUA AuNRs and (B) 0.5 nM MUA AuNRs (C) 1.0 nM MUA AuNRs (D) 2.0 nM MUA AuNRs.

Figure S11: Averaged stress versus strain curves obtained from DMA for (A) PEG-SH AuNR Ca-alginate/PAAm hydrogels and (B) MUA AuNR Ca-alginate/PAAm hydrogels. The solid line is the average of multiple curves and the dotted line is the standard error in the average curve.

Figure S12: Polarized UV-vis extinction spectra of Na-alginate/PAAm hydrogels with 1.0 nM CTAB AuNRs stretched varying amounts. (A) Polarized parallel to the stretch direction (0°). (B) Polarized perpendicular to the stretch direction (90°). Colors represent different elongation percentages in relation to the initial length of the hydrogel (black: 0%, red: 100%, blue: 200%, green: 300%, purple: 400%, and gold: 500%).

Figure S13: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 0.1 nM CTAB AuNRs. (A) Polarized parallel to the stretch direction (0°) . (B) Polarized perpendicular to the stretch direction (90°) . Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length.

Figure S14: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 1.0 nM CTAB AuNRs. (A) Polarized parallel to the stretch direction (0°). (B) Polarized perpendicular to the stretch direction (90°). Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length. (C) Plot of the ratio of the extinction at the longitudinal plasmon for light polarized parallel over light polarized perpendicular for each stretch/relax cycle. Colors represent different stretch/relax cycles, while filled circles represent the ratio the relaxed hydrogel, and open circles represent the ratio of the stretched hydrogel.

Figure S15: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 0.1 nM PEG-SH AuNRs. (A) Polarized parallel to the stretch direction (0°) . (B) Polarized perpendicular to the stretch direction (90°) . Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length. (C) Plot of the ratio of the extinction at the longitudinal plasmon for light polarized parallel over light polarized perpendicular for each stretch/relax cycle. Colors represent different stretch/relax cycles, while filled circles represent the ratio the relaxed hydrogel, and open circles represent the ratio of the stretched hydrogel.

Figure S16: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 1.0 nM PEG-SH AuNRs. (A) Polarized parallel to the stretch direction (0°) . (B) Polarized perpendicular to the stretch direction (90°) . Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length. (C) Plot of the ratio of the extinction at the longitudinal plasmon for light polarized parallel over light polarized perpendicular for each stretch/relax cycle. Colors represent different stretch/relax cycles, while filled circles represent the ratio the relaxed hydrogel, and open circles represent the ratio of the stretched hydrogel.

Figure S17: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 0.1 nM MUA AuNRs. (A) Polarized parallel to the stretch direction (0°) . (B) Polarized perpendicular to the stretch direction (90°) . Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length. (C) Plot of the ratio of the extinction at the longitudinal plasmon for light polarized parallel over light polarized perpendicular for each stretch/relax cycle. Colors represent different stretch/relax cycles, while filled circles represent the ratio the relaxed hydrogel, and open circles represent the ratio of the stretched hydrogel.

Figure S18: Polarized UV-vis extinction spectra of a Na-alginate/PAAm hydrogel with 1.0 nM MUA AuNRs. (A) Polarized parallel to the stretch direction (0°) . (B) Polarized perpendicular to the stretch direction (90°) . Colors represent different stretch/relax cycles (red: 1st, blue: 2nd, green: 3rd). Solid lines represent the spectra of a relaxed hydrogel and dotted lines represent the spectra of the hydrogel stretched 500% its initial length. (C) Plot of the ratio of the extinction at the longitudinal plasmon for light polarized parallel over light polarized perpendicular for each stretch/relax cycle. Colors represent different stretch/relax cycles, while filled circles represent the ratio the relaxed hydrogel, and open circles represent the ratio of the stretched hydrogel.

Figure S19: TEM images of AuNRs aligned in a stretched 2.0 nM PEG-SH Na-alginate/PAAm hydrogel at different magnifications (A) 40,000x and (B) 10,000x.

3. References

- (1) Yang, C. H.; Wang, M. X.; Haider, H.; Yang, J. H.; Sun, J.-Y.; Chen, Y. M.; Zhou, J.; Suo, Z. Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations. *ACS Appl. Mater. Interfaces* **2013**, *5* (21), 10418–10422.
- (2) Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. *Nature* 2012, 489 (7414), 133–136.