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1 First Approximation

First term:
ov©® 9p, vO0c
T g0y, ey — 0. v, S1
8pb ot v ‘o Pb v Po ( )
Second term:
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(S3)
Third term:
ovar 3
T 5 =5 Ocy - V,InT + VOV, . co — VOW2¢y -V, InT — 3W2Vr-c0
(54)
We have used W? = 5%5(c — c)®. Eventually, the last term:
0 _ v 3 O 12 ©
c- -V, UV = Ve — =¥%e -V, InT + VYW -V, InT + 2V ——W - (cV, - co)
Pb 2 kaT
(S5)
To reiterate, we have let C = ¢ — cg, this leads to:
5 v _ gy
O(r_= 2 _Z - =
v ([ C-V, InT+W2C-V, nT]+2[WW : V,cq 3W 1:V,col+C- Z bka> -
(S6)
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(S7)

Iis a 3 x 3 identity matrix. p; is the number density of the jth bead such that p, = Zj 0j
and F; is the intramolecular force acting upon the jth bead.

2 Evaluation of the Component p,,

C' is the magnitude of the vector C, C, and C, are the  and y components of the vector C.
To be more explicit,

C.
c=|c, (S8)
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C=.\/C2+C2+C? (99)

In spherical coordinates, we have:

C'sin 0 cos ¥
C = |[Csinfsiny (S10)
C cosf
Then:
00 2m ™ 00
/ C,C,v0qC = / sin ¢ cos Ydy / sin® 0d6 / eRARN6; (S11)
—o00 0 0 0
The integral fo27r sin 1) cos ¥di = 0, therefore:
/ C,C,v0dC =0 (S12)

Now, consider the terms:
/ (chy(—gc +W2C)v94C -V, InT (S13)

And:
C,C,CvqC - S14
/ Z pbk‘bT (514)

By considering terms in three different directions:

27
(W2 — galnT / / / C,C,CrU 9 C2dC sin §dOdy) (S15)

/ / / C,C,CrU O C2dC sin Adfdr) (S16)
bka

where [ can be z, y or z. Fj; is the intramolecular force acting upon jth bead in the [
direction. Consider the integral over 1, by the fact that C; = C'sinf cos, Cy, = C'sinfsin,
and C, = C cos#, we only have to confirm that the followings are zeros:

/2 cos? i sin Pdy = — [cos ¢] =0 (for, | = ) (S17)
0

=0 (for, Il =vy) (S18)
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0

]

oo|>—u

/27r cos ¥ sin Ydy) =
0
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27 1 o
/ cos 1 sindiy) = ~3 [0052 14 =0 (for, I = z)
0 0
We then come to the conclusion that:

/ Cxoy(—gc +W2C)¥VdC - V. InT = 0

[e.9]

/ C,C,CcuvdC - Zka—o
_ bivh

Hence, combining Equation (S20) and Equation (S21) together and multiply it by —,

then get Equation (8).

3 Integration in Evaluation of 7,

Consider the integral in Equation (9),
/ c,C,C,C,v0qc

In spherical coordinate, this gives us:

2 ™ 00
/ / / C,C,CC,C*TO sin §dC'dhde
0 0 0

It is known that C, = C'sinflcosy and Cy = C'sinfsinvy. Then, we have:

27 T [e'e)
/ cos? i sin? Ydi / sin® 0df / v Vqc
0 0 0

Firstly, we consider the integration over :

W =i\ 2 ol _ omith 2
cos®1psin? o) = (6 te ) (e 2‘6 )
1
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(S28)
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where 1 = y/—1. Secondly, the integration over 6 is considered:

/ sin® 0df = —/ (1 — cos?6)*d cos 6 (S29)
0 0
= —/ (1 —2cos®6 + cos" f)d cos 6 (S30)
0
B s 2 3 s 1 5 s
= (cos&)o —l—g(cos 6)0 g<cos 6)0 (S31)
2 1 4 2
= (1D 4+ (1) (1) =2 -4 = 32
(=4 (=) =) =2 42 (532)
16
=1z (S33)
The integration over C' is evaluated:
ONES [P e e
— C*dC S34
w(z) " [ e (534)
0o ) o0 671;7"2
/ Cle™7dC = / —5C*dC (S35)
5 [®e
%/ 3C=dC (536)
R e e (S37)
4% J,
15 [ et
AT dC (S38)

15 1 /x 15 T
T8 5\6_ 1663\/; (539)

where b = ﬁ Finally, we have:
o 4 rb\15 15 ™ Pb pbk2T2
0000 = pin (D) [ ol A
/OOCCyC Cy Pis\x) 16V o~ a2 T w2 (540)

4 Normal Distribution Approximation of [ (;f Py(¢p)do

In our previous work!*3, the following form of Py(¢) distribution was used:

1-F
I1—¢+A

) )]t e —)o1-0) e (~ ) e [ E A |+
(S41)

InP;=(N—z)ln [(

where ) is a small number of order of magnitude of 107, and p is the normalization constant.
Equation (5S41) is a result of Stirling approximation. Consider the integral:

/¢ " Pi6)do (842)

+
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It can be either approximated as a normal distribution with mean value and covariance being
F and F/(N —z), respectively, (cf., Equation (18)) or evaluated numerically based upon the
distribution as illustrated in Equation (S41). Figure S1 shows a plot of Equation (S42) as a
function of N computed using the more complicated form in Equation (S41) and the normal
distribution approximation in Equation (18) with F' = 0.45 and z = 2, and ¢* = 0.49 as well
as ¢ = 0.50 in the former and latter cases, respectively. The approximation is reasonably
good.
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Figure S1: Comparison of [ (;f Py(¢)d¢ as a function of N evaluated using Equation (S41)
and Equation (18) with F' = 0.45 and = = 2, as well as ¢7 = 0.49 and ¢ = 0.50 in the
former and latter cases, respectively.

5 (k) of polyethylene with different structures

The total number of @, (k) of a Gaussian polyethylene is always N? regardless of their
architectures. If this is not clear, one can write a N X [N matrix as shown below:

Wi, Wie Wiz Wig Wis
W1 Wa W3 Wag4 Was
W31 W32 W33 Wia Wip (543)
W41 Wi W43 Wi4 Was
Ws1 Ws2 Ws3 Wsa Wss

where we have let N = 5 as an example. Note that @, (k) is the Fourier Transform of
the probability of finding site v of the polyethylene with site « as reference site (wq (7))
We assume that such probability is a normal distribution function of r. Consider two beads
that are separated by one bond in linear and four-arm symmetrical star polyethylene, then
Waat1(T) 1s:

by L5 )
Waat1(r) = (;) 4re= b2 (S44)
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3
2(r

where b = 7 To evaluate the Fourier Transform of w, o41(7), we have:

ikr __ _—ikr

—2; > dr (545)

where k is the magnitude of a wavevector and ¢ = v/—1. Then, it can be rewritten:

L. <ﬁ> 1A547r [e_% / e V=8 rdy — e_% / eVt e) (546)
20k \ 0 0
1 /b\15 w21k [T
=—|—) 4dwe ®—,/— S47
2ik (71') AT (547)
2

—e (S48)
Given the fact that b= 5 <§2>, we get:

1/b\15 o] 5 ikr _ —ikr k,2 2

() ‘”/0 e L & <6 >> (549)
And if site o and site vy is separated by n bonds, then we have @, = exp(—%). In ring

polymer, it is slighly more tricky that®®:

k*o?n(N — n)] (S50)

Do = OXP [ T 6N

To see the effect of architecture on the resultant sum w(k) more clearly, consider again the
case when N = 5:
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(a) Linear structure : ‘
(b) Ring structure.
1
5 2 4
3

(c) Star structure.

Figure S2: Nomenclature of different bead in polyethylene with different structure.

Let f = exp(—kzé7 2), then based on the illustration as shown in Figure S2, the corre-
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sponding matrices for these three different structures are as below, for linear structure:

Lo
Fo1of o
A T (S51)
£orr 1
[ L

For ring structure:

[ FA5 - f6/5 f6/5 f4/5_
f4/5 1 f4/5 f6/5 f6/5
f6/5 f4/5 1 f4/5 f6/5 (852)
f6/5 f6/5 f4/5 1 f4/5
f4/5 f6/5 f6/5 f4/5 1

For four-arm symmetrical star structure:

1of e
F1fff
R A ($53)
2f e p
2oFoe e

To reiterate, w(k) for a particular structure is the summation of all the components in the
corresponding matrix.

6 Intramolecular Contribution to the Equation of State

To incorporate the intramolecular term in the pressure equation, we firstly have to know the
nature of the g™ (r), which must be normalized as follows:

1 o0
—/ drr2gW(r)dr = 1 (Sh4)
V- Jo

For monoatomic particle, g (r) = 1 as it does not have any internal structure like polymer.
Similarly, for a Gaussian polymer, in which g(*)(r) is the intramolecular radial distribution
function per two interacting beads of the same chain. Then, this means that for Gaussian
polymer, g/ (r)/V must be a normalized probability distribution function P(r) describing the
intramolecular interaction of two beads that P(r) = g"(r)/V. Such probability distribution
function for two beads connected with one another in a Gaussian chain is well-known:

P(r) = <%)3/2 exp ( - 2?:;) (Sh5)
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(r?) is the mean square statistical step length of the Gaussian chain. Now, we consider the
harmonic bond stretching potential upgyq-

dubond dubond d?”
= — S56
% dr dV (856)
r, which is the distance between two beads interacting with one another by up,,q(r), can be

expressed as follows:

r— \/V2/3(:U’2 + Y2+ 22) (S57)
Then,
dr r
— == SH8
awv 3V (538)
Therefore:
dubond dubond dr r dubond
_ el 559
av dr dV 3V dr (559)
The internal energy of one Gaussian chain with only intramolecular interaction is:
N-1
UN = Z ubond(raa raJrl) (S6O)
a=1

In statistical mechanics, the pressure of one chain with only intramolecular interaction, P,
can be expressed as:

1,07
Pg= —<—) S61

19 Z\OV/nNT (S61)
where Z = [[° e PUNdrydr,...drx if we only consider the intramolecular harmonic bond
stretching interaction. Then, we have:

oz o dU
el - _ —BUN N
( av)m /0 e G drydrs . dry (S62)
It is known that:
dU d
d_‘;v = NWubond(rl, 1'2) (863)

This is because all the bonds are identical, and up,,q(7) is a type of two-body interaction. In
addition, by definition, for a single chain, we have:

p VS [T e PUN drsdry..drn
A

Therefore, we can rewrite Equation (S62) in spherical coordinates:

1,07 o dUpon, AtNp [ dUpond
(<2 — _4xN O] 22 Tbond g / M) 3 dr (S65
Z<8V>N,T m p/o g )=y dr sv ), 9 (=g =dr (S65)

Note that p, = Np. Then we have:

4 > dtpon,
P, = il / g(l)(r)r?’—ub < dr (566)
0

(S64)

9(1)(1‘17 ry) =

3V dr

Honnell et al.® also demonstrated similar results. We then obtained Equation (30) by the
fact that P(r) = g (r)/V.
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