1 First Approximation

First term:

$$
\begin{equation*}
\frac{\partial \Psi^{(0)}}{\partial \rho_{b}} \frac{\partial \rho_{b}}{\partial t}=-\Psi^{(0)} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\mathbf{0}}-\frac{\Psi^{(0)} \mathbf{c}_{\mathbf{0}}}{\rho_{b}} \cdot \nabla_{\mathbf{r}} \rho_{b} \tag{S1}
\end{equation*}
$$

Second term:

$$
\begin{align*}
& \frac{\partial \Psi^{(0)}}{\partial \mathbf{c}_{\mathbf{0}}} \frac{\partial \mathbf{c}_{\mathbf{0}}}{\partial t}=\Psi^{(0)} \frac{m}{k_{b} T}\left(\mathbf{c}-\mathbf{c}_{\mathbf{0}}\right) \cdot\left(-\frac{k_{b}}{m} \nabla_{\mathbf{r}} T-\mathbf{c}_{\mathbf{0}} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\mathbf{0}}-\frac{k_{b} T}{m \rho_{b}} \nabla_{\mathbf{r}} \rho_{b}+\sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{m \rho_{b}}\right) \tag{S2}\\
& =-\Psi^{(0)} \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T-\Psi^{(0)} \frac{m}{k_{b} T} \mathbf{C} \cdot\left(\mathbf{c}_{\mathbf{0}} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\mathbf{0}}\right)-\frac{\Psi^{(0)}}{\rho_{b}} \mathbf{C} \cdot \nabla_{\mathbf{r}} \rho_{b}+\Psi^{(0)} \mathbf{C} \cdot \sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{\rho_{b} k_{b} T} \tag{S3}
\end{align*}
$$

Third term:

$$
\begin{equation*}
\frac{\partial \Psi^{(0)}}{\partial T} \frac{\partial T}{\partial t}=\frac{3}{2} \Psi^{(0)} \mathbf{c}_{\boldsymbol{0}} \cdot \nabla_{\mathbf{r}} \ln T+\Psi^{(0)} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\boldsymbol{0}}-\Psi^{(0)} W^{2} \mathbf{c}_{\mathbf{0}} \cdot \nabla_{\mathbf{r}} \ln T-\Psi^{(0)} \frac{2}{3} W^{2} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\mathbf{0}} \tag{S4}
\end{equation*}
$$

We have used $W^{2}=\frac{m}{2 k_{b} T}\left(\mathbf{c}-\mathbf{c}_{\mathbf{0}}\right)^{2}$. Eventually, the last term:

$$
\begin{equation*}
\mathbf{c} \cdot \nabla_{\mathbf{r}} \Psi^{(0)}=\frac{\mathbf{c} \Psi^{(0)}}{\rho_{b}} \cdot \nabla_{\mathbf{r}} \rho_{b}-\frac{3}{2} \Psi^{(0)} \mathbf{c} \cdot \nabla_{\mathbf{r}} \ln T+\Psi^{(0)} W^{2} \mathbf{c} \cdot \nabla_{\mathbf{r}} \ln T+2 \Psi^{(0)} \sqrt{\frac{m}{2 k_{b} T}} \mathbf{W} \cdot\left(\mathbf{c} \nabla_{\mathbf{r}} \cdot \mathbf{c}_{\mathbf{0}}\right) \tag{S5}
\end{equation*}
$$

To reiterate, we have let $\mathbf{C}=\mathbf{c}-\mathbf{c}_{\mathbf{0}}$, this leads to:
$\Psi^{(0)}\left(\left[-\frac{5}{2} \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T+W^{2} \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T\right]+2\left[\mathbf{W} \mathbf{W}: \nabla_{\mathbf{r}} \mathbf{c}_{\mathbf{0}}-\frac{1}{3} W^{2} \mathbf{I}: \nabla_{\mathbf{r}} \mathbf{c}_{\mathbf{0}}\right]+\mathbf{C} \cdot \sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{\rho_{b} k_{b} T}\right)=-\frac{\Psi^{(1)}-\Psi^{(0)}}{\tau}$
$\Psi^{(1)}=\Psi^{(0)}\left[1-\tau\left[\left(-\frac{5}{2} \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T+W^{2} \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T\right)+2\left(\mathbf{W} \mathbf{W}: \nabla_{\mathbf{r}} \mathbf{c}_{\mathbf{0}}-\frac{1}{3} W^{2} \mathbf{I}: \nabla_{\mathbf{r}} \mathbf{c}_{\mathbf{0}}\right)+\mathbf{C} \cdot \sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{\rho_{b} k_{b} T}\right]\right]$
\mathbf{I} is a 3×3 identity matrix. ρ_{j} is the number density of the j th bead such that $\rho_{b}=\sum_{j} \rho_{j}$ and $\mathbf{F}_{\mathbf{j}}$ is the intramolecular force acting upon the j th bead.

2 Evaluation of the Component $p_{x y}$

C is the magnitude of the vector \mathbf{C}, C_{x} and C_{y} are the x and y components of the vector \mathbf{C}. To be more explicit,

$$
\mathbf{C}=\left[\begin{array}{l}
C_{x} \tag{S8}\\
C_{y} \\
C_{z}
\end{array}\right]
$$

$$
\begin{equation*}
C=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}} \tag{S9}
\end{equation*}
$$

In spherical coordinates, we have:

$$
\mathbf{C}=\left[\begin{array}{c}
C \sin \theta \cos \psi \tag{S10}\\
C \sin \theta \sin \psi \\
C \cos \theta
\end{array}\right]
$$

Then:

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y} \Psi^{(0)} d \mathbf{C}=\int_{0}^{2 \pi} \sin \psi \cos \psi d \psi \int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{\infty} C^{4} \Psi^{(0)} d C \tag{S11}
\end{equation*}
$$

The integral $\int_{0}^{2 \pi} \sin \psi \cos \psi d \psi=0$, therefore:

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y} \Psi^{(0)} d \mathbf{C}=0 \tag{S12}
\end{equation*}
$$

Now, consider the terms:

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y}\left(-\frac{5}{2} \mathbf{C}+W^{2} \mathbf{C}\right) \Psi^{(0)} d \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T \tag{S13}
\end{equation*}
$$

And:

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y} \mathbf{C} \Psi^{(0)} d \mathbf{C} \cdot \sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{\rho_{b} k_{b} T} \tag{S14}
\end{equation*}
$$

By considering terms in three different directions:

$$
\begin{align*}
& \left(W^{2}-\frac{5}{2}\right) \frac{\partial \ln T}{\partial l} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} C_{x} C_{y} C_{l} \Psi^{(0)} C^{2} d C \sin \theta d \theta d \psi \tag{S15}\\
& \left(\sum_{j} \frac{\rho_{j} F_{j, l}}{\rho_{b} k_{b} T}\right) \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} C_{x} C_{y} C_{l} \Psi^{(0)} C^{2} d C \sin \theta d \theta d \psi \tag{S16}
\end{align*}
$$

where l can be x, y or $z . F_{j, l}$ is the intramolecular force acting upon j th bead in the l direction. Consider the integral over ψ, by the fact that $C_{x}=C \sin \theta \cos \psi, C_{y}=C \sin \theta \sin \psi$, and $C_{z}=C \cos \theta$, we only have to confirm that the followings are zeros:

$$
\begin{align*}
& \int_{0}^{2 \pi} \cos ^{2} \psi \sin \psi d \psi=-\frac{1}{3}\left[\cos ^{3} \psi\right]_{0}^{2 \pi}=0(\text { for, } l=x) \tag{S17}\\
& \int_{0}^{2 \pi} \cos \psi \sin ^{2} \psi d \psi=\frac{1}{3}\left[\sin ^{3} \psi\right]_{0}^{2 \pi}=0(\text { for, } l=y) \tag{S18}
\end{align*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos \psi \sin \psi d \psi=-\frac{1}{2}\left[\cos ^{2} \psi\right]_{0}^{2 \pi}=0(\text { for, } l=z) \tag{S19}
\end{equation*}
$$

We then come to the conclusion that:

$$
\begin{align*}
& \int_{-\infty}^{\infty} C_{x} C_{y}\left(-\frac{5}{2} \mathbf{C}+W^{2} \mathbf{C}\right) \Psi^{(0)} d \mathbf{C} \cdot \nabla_{\mathbf{r}} \ln T=0 \tag{S20}\\
& \int_{-\infty}^{\infty} C_{x} C_{y} \mathbf{C} \Psi^{(0)} d \mathbf{C} \cdot \sum_{j} \frac{\rho_{j} \mathbf{F}_{\mathbf{j}}}{\rho_{b} k_{b} T}=0 \tag{S21}
\end{align*}
$$

Hence, combining Equation (S20) and Equation (S21) together and multiply it by $-\tau$, we then get Equation (8).

3 Integration in Evaluation of η_{d}

Consider the integral in Equation (9),

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y} C_{x} C_{y} \Psi^{(0)} d \mathbf{C} \tag{S22}
\end{equation*}
$$

In spherical coordinate, this gives us:

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} C_{x} C_{y} C_{x} C_{y} C^{2} \Psi^{(0)} \sin \theta d C d \theta d \psi \tag{S23}
\end{equation*}
$$

It is known that $C_{x}=C \sin \theta \cos \psi$ and $C_{y}=C \sin \theta \sin \psi$. Then, we have:

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos ^{2} \psi \sin ^{2} \psi d \psi \int_{0}^{\pi} \sin ^{5} \theta d \theta \int_{0}^{\infty} C^{6} \Psi^{(0)} d C \tag{S24}
\end{equation*}
$$

Firstly, we consider the integration over ψ :

$$
\begin{align*}
\cos ^{2} \psi \sin ^{2} \psi & =\left(\frac{e^{i \psi}+e^{-i \psi}}{2}\right)^{2}\left(\frac{e^{i \psi}-e^{-i \psi}}{2 i}\right)^{2} \tag{S25}\\
\int_{0}^{2 \pi} \cos ^{2} \psi \sin ^{2} \psi d \psi & =-\frac{1}{16} \int_{0}^{2 \pi}\left[\left(e^{4 i \psi}+e^{-4 i \psi}\right)-2\right] d \psi \tag{S26}\\
& =-\frac{1}{16}\left[\frac{e^{4 i \psi}}{4 i}-\frac{e^{-4 i \psi}}{4 i}-2 \theta\right]_{0}^{2 \pi} \tag{S27}\\
& =-\frac{1}{16}\left(\frac{2 i \sin 4 \psi}{2}\right)_{0}^{2 \pi}=\frac{\pi}{4} \tag{S28}
\end{align*}
$$

where $i=\sqrt{-1}$. Secondly, the integration over θ is considered:

$$
\begin{align*}
\int_{0}^{\pi} \sin ^{5} \theta d \theta & =-\int_{0}^{\pi}\left(1-\cos ^{2} \theta\right)^{2} d \cos \theta \tag{S29}\\
& =-\int_{0}^{\pi}\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right) d \cos \theta \tag{S30}\\
& =-(\cos \theta)_{0}^{\pi}+\frac{2}{3}\left(\cos ^{3} \theta\right)_{0}^{\pi}-\frac{1}{5}\left(\cos ^{5} \theta\right)_{0}^{\pi} \tag{S31}\\
& =-(-1-1)+\frac{2}{3}(-1-1)-\frac{1}{5}(-1-1)=2-\frac{4}{3}+\frac{2}{5} \tag{S32}\\
& =\frac{16}{15} \tag{S33}
\end{align*}
$$

The integration over C is evaluated:

$$
\begin{align*}
& \rho_{b}\left(\frac{b}{\pi}\right)^{1.5} \int_{0}^{\infty} e^{-b C^{2}} C^{6} d C \tag{S34}\\
& \int_{0}^{\infty} C^{6} e^{-b C^{2}} d C=\int_{0}^{\infty} \frac{e^{-b r^{2}}}{2 b} 5 C^{4} d C \tag{S35}\\
&=\frac{5}{2 b} \int_{0}^{\infty} \frac{e^{-b C^{2}}}{2 b} 3 C^{2} d C \tag{S36}\\
&=\frac{15}{4 b^{2}} \int_{0}^{\infty} e^{-b C^{2}} C^{2} d C \tag{S37}\\
&=\frac{15}{4 b^{2}} \int_{0}^{\infty} \frac{e^{-b C^{2}}}{2 b} d C \tag{S38}\\
&=\frac{15}{8 b^{3}} \cdot \frac{1}{2} \sqrt{\frac{\pi}{b}}=\frac{15}{16 b^{3}} \sqrt{\frac{\pi}{b}} \tag{S39}
\end{align*}
$$

where $b=\frac{m}{2 k_{b} T}$. Finally, we have:

$$
\begin{equation*}
\int_{-\infty}^{\infty} C_{x} C_{y} C_{x} C_{y} \Psi^{(0)} d \mathbf{C}=\rho_{b} \frac{4 \pi}{15}\left(\frac{b}{\pi}\right)^{1.5} \frac{15}{16 b^{3}} \sqrt{\frac{\pi}{b}}=\frac{\rho_{b}}{4 b^{2}}=\frac{\rho_{b} k_{b}^{2} T^{2}}{m^{2}} \tag{S40}
\end{equation*}
$$

4 Normal Distribution Approximation of $\int_{\phi^{+}}^{\infty} P_{d}(\phi) d \phi$

In our previous work ${ }^{1,2,3}$, the following form of $P_{d}(\phi)$ distribution was used:
$\ln P_{d}=(N-x) \ln \left[\left(\frac{1-F}{1-\phi+\lambda}\right)^{1-\phi}\left(\frac{F}{\phi+\lambda}\right)^{\phi}\right]-\frac{1}{2} \ln \left[2 \pi(N-x) \phi(1-\phi)+\exp \left(-\frac{\phi^{2}}{\lambda^{2}}\right)+\exp \left[-\frac{(\phi-1)^{2}}{\lambda^{2}}\right]\right]+\ln (\mu$
where λ is a small number of order of magnitude of 10^{-5}, and μ is the normalization constant. Equation (S41) is a result of Stirling approximation. Consider the integral:

$$
\begin{equation*}
\int_{\phi^{+}}^{\infty} P_{d}(\phi) d \phi \tag{S42}
\end{equation*}
$$

It can be either approximated as a normal distribution with mean value and covariance being F and $F /(N-x)$, respectively, (cf., Equation (18)) or evaluated numerically based upon the distribution as illustrated in Equation (S41). Figure S1 shows a plot of Equation (S42) as a function of N computed using the more complicated form in Equation (S41) and the normal distribution approximation in Equation (18) with $F=0.45$ and $x=2$, and $\phi^{+}=0.49$ as well as $\phi^{+}=0.50$ in the former and latter cases, respectively. The approximation is reasonably good.

Figure S1: Comparison of $\int_{\phi^{+}}^{\infty} P_{d}(\phi) d \phi$ as a function of N evaluated using Equation (S41) and Equation (18) with $F=0.45$ and $x=2$, as well as $\phi^{+}=0.49$ and $\phi^{+}=0.50$ in the former and latter cases, respectively.

$5 \hat{\omega}(k)$ of polyethylene with different structures

The total number of $\hat{\omega}_{\alpha, \gamma}(k)$ of a Gaussian polyethylene is always N^{2} regardless of their architectures. If this is not clear, one can write a $N \times N$ matrix as shown below:

$$
\left[\begin{array}{lllll}
\hat{\omega}_{1,1} & \hat{\omega}_{1,2} & \hat{\omega}_{1,3} & \hat{\omega}_{1,4} & \hat{\omega}_{1,5} \tag{S43}\\
\hat{\omega}_{2,1} & \hat{\omega}_{2,2} & \hat{\omega}_{2,3} & \hat{\omega}_{2,4} & \hat{\omega}_{2,5} \\
\hat{\omega}_{3,1} & \hat{\omega}_{3,2} & \hat{\omega}_{3,3} & \hat{\omega}_{3,4} & \hat{\omega}_{3,5} \\
\hat{\omega}_{4,1} & \hat{\omega}_{4,2} & \hat{\omega}_{4,3} & \hat{\omega}_{4,4} & \hat{\omega}_{4,5} \\
\hat{\omega}_{5,1} & \hat{\omega}_{5,2} & \hat{\omega}_{5,3} & \hat{\omega}_{5,4} & \hat{\omega}_{5,5}
\end{array}\right]
$$

where we have let $N=5$ as an example. Note that $\hat{\omega}_{\alpha, \gamma}(k)$ is the Fourier Transform of the probability of finding site γ of the polyethylene with site α as reference site $\left(\omega_{\alpha, \gamma}(r)\right)$. We assume that such probability is a normal distribution function of r. Consider two beads that are separated by one bond in linear and four-arm symmetrical star polyethylene, then $\omega_{\alpha, \alpha+1}(r)$ is:

$$
\begin{equation*}
\omega_{\alpha, \alpha+1}(r)=\left(\frac{b}{\pi}\right)^{1.5} 4 \pi e^{-b r^{2}} r^{2} \tag{S44}
\end{equation*}
$$

where $b=\frac{3}{2\left\langle r^{2}\right\rangle}$. To evaluate the Fourier Transform of $\omega_{\alpha, \alpha+1}(r)$, we have:

$$
\begin{equation*}
\frac{1}{k}\left(\frac{b}{\pi}\right)^{1.5} 4 \pi \int_{0}^{\infty} e^{-b r^{2}} r\left(\frac{e^{i k r}-e^{-i k r}}{2 i}\right) d r \tag{S45}
\end{equation*}
$$

where k is the magnitude of a wavevector and $i=\sqrt{-1}$. Then, it can be rewritten:

$$
\begin{align*}
& \frac{1}{2 i k}\left(\frac{b}{\pi}\right)^{1.5} 4 \pi\left[e^{-\frac{k^{2}}{4 b}} \int_{0}^{\infty} e^{-b\left(r-\frac{i k}{2 b}\right)^{2}} r d r-e^{-\frac{k^{2}}{4 b}} \int_{0}^{\infty} e^{-b\left(r+\frac{i k}{2 b}\right)^{2}} r d r\right] \tag{S46}\\
& =\frac{1}{2 i k}\left(\frac{b}{\pi}\right)^{1.5} 4 \pi e^{-\frac{k^{2}}{4 b}} \frac{i k}{2 b} \sqrt{\frac{\pi}{b}} \tag{S47}\\
& =e^{-\frac{k^{2}}{4 b}} \tag{S48}
\end{align*}
$$

Given the fact that $b=\frac{3}{2\left\langle r^{2}\right\rangle}$, we get:

$$
\begin{equation*}
\frac{1}{k}\left(\frac{b}{\pi}\right)^{1.5} 4 \pi \int_{0}^{\infty} e^{-b r^{2}} r\left(\frac{e^{i k r}-e^{-i k r}}{2 i}\right) d r=\exp \left(-\frac{k^{2}\left\langle r^{2}\right\rangle}{6}\right) \tag{S49}
\end{equation*}
$$

And if site α and site γ is separated by n bonds, then we have $\hat{\omega}_{\alpha, \gamma}=\exp \left(-\frac{n k^{2} \sigma^{2}}{6}\right)$. In ring polymer, it is slighly more tricky that ${ }^{4,5}$:

$$
\begin{equation*}
\hat{\omega}_{\alpha, \gamma}=\exp \left[-\frac{k^{2} \sigma^{2} n(N-n)}{6 N}\right] \tag{S50}
\end{equation*}
$$

To see the effect of architecture on the resultant sum $\hat{\omega}(k)$ more clearly, consider again the case when $N=5$:

Figure S2: Nomenclature of different bead in polyethylene with different structure.
Let $f=\exp \left(-\frac{k^{2} \sigma^{2}}{6}\right)$, then based on the illustration as shown in Figure S 2 , the corre-
sponding matrices for these three different structures are as below, for linear structure:

$$
\left[\begin{array}{ccccc}
1 & f & f^{2} & f^{3} & f^{4} \tag{S51}\\
f & 1 & f & f^{2} & f^{3} \\
f^{2} & f & 1 & f & f^{2} \\
f^{3} & f^{2} & f & 1 & f \\
f^{4} & f^{3} & f^{2} & f & 1
\end{array}\right]
$$

For ring structure:

$$
\left[\begin{array}{ccccc}
1 & f^{4 / 5} & f^{6 / 5} & f^{6 / 5} & f^{4 / 5} \tag{S52}\\
f^{4 / 5} & 1 & f^{4 / 5} & f^{6 / 5} & f^{6 / 5} \\
f^{6 / 5} & f^{4 / 5} & 1 & f^{4 / 5} & f^{6 / 5} \\
f^{6 / 5} & f^{6 / 5} & f^{4 / 5} & 1 & f^{4 / 5} \\
f^{4 / 5} & f^{6 / 5} & f^{6 / 5} & f^{4 / 5} & 1
\end{array}\right]
$$

For four-arm symmetrical star structure:

$$
\left[\begin{array}{ccccc}
1 & f & f^{2} & f^{2} & f^{2} \tag{S53}\\
f & 1 & f & f & f \\
f^{2} & f & 1 & f^{2} & f^{2} \\
f^{2} & f & f^{2} & 1 & f^{2} \\
f^{2} & f & f^{2} & f^{2} & 1
\end{array}\right]
$$

To reiterate, $\hat{\omega}(k)$ for a particular structure is the summation of all the components in the corresponding matrix.

6 Intramolecular Contribution to the Equation of State

To incorporate the intramolecular term in the pressure equation, we firstly have to know the nature of the $g^{(1)}(r)$, which must be normalized as follows:

$$
\begin{equation*}
\frac{1}{V} \int_{0}^{\infty} 4 \pi r^{2} g^{(1)}(r) d r=1 \tag{S54}
\end{equation*}
$$

For monoatomic particle, $g^{(1)}(r)=1$ as it does not have any internal structure like polymer. Similarly, for a Gaussian polymer, in which $g^{(1)}(r)$ is the intramolecular radial distribution function per two interacting beads of the same chain. Then, this means that for Gaussian polymer, $g^{(1)}(r) / V$ must be a normalized probability distribution function $P(r)$ describing the intramolecular interaction of two beads that $P(r)=g^{(1)}(r) / V$. Such probability distribution function for two beads connected with one another in a Gaussian chain is well-known:

$$
\begin{equation*}
P(r)=\left(\frac{3}{2 \pi\left\langle r^{2}\right\rangle}\right)^{3 / 2} \exp \left(-\frac{3 r^{2}}{2\left\langle r^{2}\right\rangle}\right) \tag{S55}
\end{equation*}
$$

$\left\langle r^{2}\right\rangle$ is the mean square statistical step length of the Gaussian chain. Now, we consider the harmonic bond stretching potential $u_{\text {bond }}$.

$$
\begin{equation*}
\frac{d u_{\text {bond }}}{d V}=\frac{d u_{\text {bond }}}{d r} \frac{d r}{d V} \tag{S56}
\end{equation*}
$$

r, which is the distance between two beads interacting with one another by $u_{\text {bond }}(r)$, can be expressed as follows:

$$
\begin{equation*}
r=\sqrt{V^{2 / 3}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)} \tag{S57}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{d r}{d V}=\frac{r}{3 V} \tag{S58}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
\frac{d u_{\text {bond }}}{d V}=\frac{d u_{\text {bond }}}{d r} \frac{d r}{d V}=\frac{r}{3 V} \frac{d u_{\text {bond }}}{d r} \tag{S59}
\end{equation*}
$$

The internal energy of one Gaussian chain with only intramolecular interaction is:

$$
\begin{equation*}
U_{N}=\sum_{\alpha=1}^{N-1} u_{\text {bond }}\left(\mathbf{r}_{\alpha}, \mathbf{r}_{\alpha+\mathbf{1}}\right) \tag{S60}
\end{equation*}
$$

In statistical mechanics, the pressure of one chain with only intramolecular interaction, P_{1} can be expressed as:

$$
\begin{equation*}
P_{1} \beta=\frac{1}{Z}\left(\frac{\partial Z}{\partial V}\right)_{N, T} \tag{S61}
\end{equation*}
$$

where $Z=\int_{0}^{\infty} e^{-\beta U_{N}} d \mathbf{r}_{1} d \mathbf{r}_{2} \ldots d \mathbf{r}_{\mathbf{N}}$ if we only consider the intramolecular harmonic bond stretching interaction. Then, we have:

$$
\begin{equation*}
\left(\frac{\partial Z}{\partial V}\right)_{N, T}=-\int_{0}^{\infty} e^{-\beta U_{N}} \beta \frac{d U_{N}}{d V} d \mathbf{r}_{\mathbf{1}} d \mathbf{r}_{\mathbf{2}} \ldots d \mathbf{r}_{\mathbf{N}} \tag{S62}
\end{equation*}
$$

It is known that:

$$
\begin{equation*}
\frac{d U_{N}}{d V}=N \frac{d}{d V} u_{b o n d}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \tag{S63}
\end{equation*}
$$

This is because all the bonds are identical, and $u_{\text {bond }}(r)$ is a type of two-body interaction. In addition, by definition, for a single chain, we have:

$$
\begin{equation*}
g^{(1)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{\rho^{-1} V \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\beta U_{N}} d \mathbf{r}_{\mathbf{3}} d \mathbf{r}_{4} \ldots d \mathbf{r}_{\mathrm{N}}}{Z} \tag{S64}
\end{equation*}
$$

Therefore, we can rewrite Equation (S62) in spherical coordinates:

$$
\begin{equation*}
\frac{1}{Z}\left(\frac{\partial Z}{\partial V}\right)_{N, T}=-4 \pi N \rho \int_{0}^{\infty} g^{(1)}(r) \beta r^{2} \frac{d u_{\text {bond }}}{d V} d r=-\frac{4 \pi N \rho}{3 V} \int_{0}^{\infty} g^{(1)}(r) \beta r^{3} \frac{d u_{\text {bond }}}{d r} d r \tag{S65}
\end{equation*}
$$

Note that $\rho_{b}=N \rho$. Then we have:

$$
\begin{equation*}
P_{1}=-\frac{4 \pi \rho_{b}}{3 V} \int_{0}^{\infty} g^{(1)}(r) r^{3} \frac{d u_{\text {bond }}}{d r} d r \tag{S66}
\end{equation*}
$$

Honnell et al. ${ }^{6}$ also demonstrated similar results. We then obtained Equation (30) by the fact that $P(r)=g^{(1)}(r) / V$.

References

[1] C. P. J. Wong and P. Choi, Soft matter, 2019, 15, 9300-9309.
[2] C. P. J. Wong and P. Choi, Soft Matter, 2020, 16, 2350-2362.
[3] C. P. J. Wong and P. Choi, Soft Matter, 2020, 16, 4283-4289.
[4] K. S. Schweizer and J. G. Curro, Phys. Rev. Lett., 1987, 58, 246.
[5] K. S. Schweizer and J. G. Curro, Macromolecules, 1988, 21, 3070-3081.
[6] K. Honnell, C. Hall and R. Dickman, J. Chem. Phys., 1987, 87, 664-674.

