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1 First Approximation

First term:

∂Ψ(0)

∂ρb

∂ρb
∂t

= −Ψ(0)∇r · c0 −
Ψ(0)c0

ρb
· ∇rρb (S1)

Second term:

∂Ψ(0)

∂c0

∂c0

∂t
= Ψ(0) m

kbT
(c− c0) · (−kb

m
∇rT − c0∇r · c0 −

kbT

mρb
∇rρb +

∑
j

ρjFj

mρb
) (S2)

= −Ψ(0)C · ∇r lnT −Ψ(0) m

kbT
C · (c0∇r · c0)− Ψ(0)

ρb
C · ∇rρb + Ψ(0)C ·

∑
j

ρjFj

ρbkbT

(S3)

Third term:

∂Ψ(0)

∂T

∂T

∂t
=

3

2
Ψ(0)c0 · ∇r lnT + Ψ(0)∇r · c0 −Ψ(0)W 2c0 · ∇r lnT −Ψ(0)2

3
W 2∇r · c0

(S4)

We have used W 2 = m
2kbT

(c− c0)2. Eventually, the last term:

c · ∇rΨ
(0) =

cΨ(0)

ρb
· ∇rρb −

3

2
Ψ(0)c · ∇r lnT + Ψ(0)W 2c · ∇r lnT + 2Ψ(0)

√
m

2kbT
W · (c∇r · c0)

(S5)

To reiterate, we have let C = c− c0, this leads to:

Ψ(0)
(

[−5

2
C·∇r lnT+W 2C·∇r lnT ]+2[WW : ∇rc0−

1

3
W 2I : ∇rc0]+C·

∑
j

ρjFj

ρbkbT

)
= −Ψ(1) −Ψ(0)

τ

(S6)

Ψ(1) = Ψ(0)
[
1−τ [(−5

2
C·∇r lnT+W 2C·∇r lnT )+2(WW : ∇rc0−

1

3
W 2I : ∇rc0)+C·

∑
j

ρjFj

ρbkbT
]
]

(S7)

I is a 3 × 3 identity matrix. ρj is the number density of the jth bead such that ρb =
∑

j ρj
and Fj is the intramolecular force acting upon the jth bead.

2 Evaluation of the Component pxy

C is the magnitude of the vector C, Cx and Cy are the x and y components of the vector C.
To be more explicit,

C =

CxCy
Cz

 (S8)
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C =
√
C2
x + C2

y + C2
z (S9)

In spherical coordinates, we have:

C =

C sin θ cosψ
C sin θ sinψ
C cos θ

 (S10)

Then:∫ ∞
−∞

CxCyΨ
(0)dC =

∫ 2π

0

sinψ cosψdψ

∫ π

0

sin3 θdθ

∫ ∞
0

C4Ψ(0)dC (S11)

The integral
∫ 2π

0
sinψ cosψdψ = 0, therefore:∫ ∞

−∞
CxCyΨ

(0)dC = 0 (S12)

Now, consider the terms:∫ ∞
−∞

CxCy(−
5

2
C +W 2C)Ψ(0)dC · ∇r lnT (S13)

And: ∫ ∞
−∞

CxCyCΨ(0)dC ·
∑
j

ρjFj

ρbkbT
(S14)

By considering terms in three different directions:

(W 2 − 5

2
)
∂ lnT

∂l

∫ 2π

0

∫ π

0

∫ ∞
0

CxCyClΨ
(0)C2dC sin θdθdψ (S15)

(∑
j

ρjFj,l
ρbkbT

)∫ 2π

0

∫ π

0

∫ ∞
0

CxCyClΨ
(0)C2dC sin θdθdψ (S16)

where l can be x, y or z. Fj,l is the intramolecular force acting upon jth bead in the l
direction. Consider the integral over ψ, by the fact that Cx = C sin θ cosψ, Cy = C sin θ sinψ,
and Cz = C cos θ, we only have to confirm that the followings are zeros:∫ 2π

0

cos2 ψ sinψdψ = −1

3

[
cos3 ψ

]2π
0

= 0 (for, l = x) (S17)

∫ 2π

0

cosψ sin2 ψdψ =
1

3

[
sin3 ψ

]2π
0

= 0 (for, l = y) (S18)
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∫ 2π

0

cosψ sinψdψ = −1

2

[
cos2 ψ

]2π
0

= 0 (for, l = z) (S19)

We then come to the conclusion that:∫ ∞
−∞

CxCy(−
5

2
C +W 2C)Ψ(0)dC · ∇r lnT = 0 (S20)

∫ ∞
−∞

CxCyCΨ(0)dC ·
∑
j

ρjFj

ρbkbT
= 0 (S21)

Hence, combining Equation (S20) and Equation (S21) together and multiply it by −τ , we
then get Equation (8).

3 Integration in Evaluation of ηd

Consider the integral in Equation (9),∫ ∞
−∞

CxCyCxCyΨ
(0)dC (S22)

In spherical coordinate, this gives us:∫ 2π

0

∫ π

0

∫ ∞
0

CxCyCxCyC
2Ψ(0) sin θdCdθdψ (S23)

It is known that Cx = C sin θ cosψ and Cy = C sin θ sinψ. Then, we have:∫ 2π

0

cos2 ψ sin2 ψdψ

∫ π

0

sin5 θdθ

∫ ∞
0

C6Ψ(0)dC (S24)

Firstly, we consider the integration over ψ:

cos2 ψ sin2 ψ =
(eiψ + e−iψ

2

)2(eiψ − e−iψ
2i

)2
(S25)∫ 2π

0

cos2 ψ sin2 ψdψ = − 1

16

∫ 2π

0

[
(e4iψ + e−4iψ)− 2

]
dψ (S26)

= − 1

16

[e4iψ
4i
− e−4iψ

4i
− 2θ

]2π
0

(S27)

= − 1

16

(2i sin 4ψ

2

)2π
0

=
π

4
(S28)
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where i =
√
−1. Secondly, the integration over θ is considered:∫ π

0

sin5 θdθ = −
∫ π

0

(1− cos2 θ)2d cos θ (S29)

= −
∫ π

0

(1− 2 cos2 θ + cos4 θ)d cos θ (S30)

= −
(

cos θ
)π
0

+
2

3

(
cos3 θ

)π
0
− 1

5

(
cos5 θ

)π
0

(S31)

= −(−1− 1) +
2

3
(−1− 1)− 1

5
(−1− 1) = 2− 4

3
+

2

5
(S32)

=
16

15
(S33)

The integration over C is evaluated:

ρb

( b
π

)1.5 ∫ ∞
0

e−bC
2

C6dC (S34)

∫ ∞
0

C6e−bC
2

dC =

∫ ∞
0

e−br
2

2b
5C4dC (S35)

=
5

2b

∫ ∞
0

e−bC
2

2b
3C2dC (S36)

=
15

4b2

∫ ∞
0

e−bC
2

C2dC (S37)

=
15

4b2

∫ ∞
0

e−bC
2

2b
dC (S38)

=
15

8b3
· 1

2

√
π

b
=

15

16b3

√
π

b
(S39)

where b = m
2kbT

. Finally, we have:∫ ∞
−∞

CxCyCxCyΨ
(0)dC = ρb

4π

15

( b
π

)1.5 15

16b3

√
π

b
=

ρb
4b2

=
ρbk

2
bT

2

m2
(S40)

4 Normal Distribution Approximation of
∫∞
φ+ Pd(φ)dφ

In our previous work1,2,3, the following form of Pd(φ) distribution was used:

lnPd = (N−x) ln
[( 1− F

1− φ+ λ

)1−φ( F

φ+ λ

)φ]−1

2
ln
[
2π(N−x)φ(1−φ)+exp

(
−φ

2

λ2
)
+exp

[
−(φ− 1)2

λ2
]]

+ln(µ)

(S41)

where λ is a small number of order of magnitude of 10−5, and µ is the normalization constant.
Equation (S41) is a result of Stirling approximation. Consider the integral:∫ ∞

φ+
Pd(φ)dφ (S42)
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It can be either approximated as a normal distribution with mean value and covariance being
F and F/(N −x), respectively, (cf., Equation (18)) or evaluated numerically based upon the
distribution as illustrated in Equation (S41). Figure S1 shows a plot of Equation (S42) as a
function of N computed using the more complicated form in Equation (S41) and the normal
distribution approximation in Equation (18) with F = 0.45 and x = 2, and φ+ = 0.49 as well
as φ+ = 0.50 in the former and latter cases, respectively. The approximation is reasonably
good.

Figure S1: Comparison of
∫∞
φ+
Pd(φ)dφ as a function of N evaluated using Equation (S41)

and Equation (18) with F = 0.45 and x = 2, as well as φ+ = 0.49 and φ+ = 0.50 in the
former and latter cases, respectively.

5 ω̂(k) of polyethylene with different structures

The total number of ω̂α,γ(k) of a Gaussian polyethylene is always N2 regardless of their
architectures. If this is not clear, one can write a N ×N matrix as shown below:

ω̂1,1 ω̂1,2 ω̂1,3 ω̂1,4 ω̂1,5

ω̂2,1 ω̂2,2 ω̂2,3 ω̂2,4 ω̂2,5

ω̂3,1 ω̂3,2 ω̂3,3 ω̂3,4 ω̂3,5

ω̂4,1 ω̂4,2 ω̂4,3 ω̂4,4 ω̂4,5

ω̂5,1 ω̂5,2 ω̂5,3 ω̂5,4 ω̂5,5

 (S43)

where we have let N = 5 as an example. Note that ω̂α,γ(k) is the Fourier Transform of
the probability of finding site γ of the polyethylene with site α as reference site (ωα,γ(r)).
We assume that such probability is a normal distribution function of r. Consider two beads
that are separated by one bond in linear and four-arm symmetrical star polyethylene, then
ωα,α+1(r) is:

ωα,α+1(r) =
( b
π

)1.5
4πe−br

2

r2 (S44)

5



Supporting Information

where b = 3
2〈r2〉 . To evaluate the Fourier Transform of ωα,α+1(r), we have:

1

k

( b
π

)1.5
4π

∫ ∞
0

e−br
2

r
(eikr − e−ikr

2i

)
dr (S45)

where k is the magnitude of a wavevector and i =
√
−1. Then, it can be rewritten:

1

2ik

( b
π

)1.5
4π
[
e−

k2

4b

∫ ∞
0

e−b(r−
ik
2b

)2rdr − e−
k2

4b

∫ ∞
0

e−b(r+
ik
2b

)2rdr
]

(S46)

=
1

2ik

( b
π

)1.5
4πe−

k2

4b
ik

2b

√
π

b
(S47)

= e−
k2

4b (S48)

Given the fact that b = 3
2〈r2〉 , we get:

1

k

( b
π

)1.5
4π

∫ ∞
0

e−br
2

r
(eikr − e−ikr

2i

)
dr = exp

(
− k2〈r2〉

6

)
(S49)

And if site α and site γ is separated by n bonds, then we have ω̂α,γ = exp(−nk2σ2

6
). In ring

polymer, it is slighly more tricky that4,5:

ω̂α,γ = exp
[
− k2σ2n(N − n)

6N

]
(S50)

To see the effect of architecture on the resultant sum ω̂(k) more clearly, consider again the
case when N = 5:

1 2 3 4 5

(a) Linear structure.

1
2

3

45

(b) Ring structure.

1

2

3

45

(c) Star structure.

Figure S2: Nomenclature of different bead in polyethylene with different structure.

Let f = exp(−k2σ2

6
), then based on the illustration as shown in Figure S2, the corre-
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sponding matrices for these three different structures are as below, for linear structure:
1 f f 2 f 3 f 4

f 1 f f 2 f 3

f 2 f 1 f f 2

f 3 f 2 f 1 f
f 4 f 3 f 2 f 1

 (S51)

For ring structure:
1 f 4/5 f 6/5 f 6/5 f 4/5

f 4/5 1 f 4/5 f 6/5 f 6/5

f 6/5 f 4/5 1 f 4/5 f 6/5

f 6/5 f 6/5 f 4/5 1 f 4/5

f 4/5 f 6/5 f 6/5 f 4/5 1

 (S52)

For four-arm symmetrical star structure:
1 f f 2 f 2 f 2

f 1 f f f
f 2 f 1 f 2 f 2

f 2 f f 2 1 f 2

f 2 f f 2 f 2 1

 (S53)

To reiterate, ω̂(k) for a particular structure is the summation of all the components in the
corresponding matrix.

6 Intramolecular Contribution to the Equation of State

To incorporate the intramolecular term in the pressure equation, we firstly have to know the
nature of the g(1)(r), which must be normalized as follows:

1

V

∫ ∞
0

4πr2g(1)(r)dr = 1 (S54)

For monoatomic particle, g(1)(r) = 1 as it does not have any internal structure like polymer.
Similarly, for a Gaussian polymer, in which g(1)(r) is the intramolecular radial distribution
function per two interacting beads of the same chain. Then, this means that for Gaussian
polymer, g(1)(r)/V must be a normalized probability distribution function P (r) describing the
intramolecular interaction of two beads that P (r) = g(1)(r)/V . Such probability distribution
function for two beads connected with one another in a Gaussian chain is well-known:

P (r) =
( 3

2π〈r2〉

)3/2
exp

(
− 3r2

2〈r2〉

)
(S55)
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〈r2〉 is the mean square statistical step length of the Gaussian chain. Now, we consider the
harmonic bond stretching potential ubond.

dubond
dV

=
dubond
dr

dr

dV
(S56)

r, which is the distance between two beads interacting with one another by ubond(r), can be
expressed as follows:

r =
√
V 2/3(x′2 + y′2 + z′2) (S57)

Then,

dr

dV
=

r

3V
(S58)

Therefore:
dubond
dV

=
dubond
dr

dr

dV
=

r

3V

dubond
dr

(S59)

The internal energy of one Gaussian chain with only intramolecular interaction is:

UN =
N−1∑
α=1

ubond(rα, rα+1) (S60)

In statistical mechanics, the pressure of one chain with only intramolecular interaction, P1

can be expressed as:

P1β =
1

Z

(∂Z
∂V

)
N,T

(S61)

where Z =
∫∞
0
e−βUNdr1dr2...drN if we only consider the intramolecular harmonic bond

stretching interaction. Then, we have:(∂Z
∂V

)
N,T

= −
∫ ∞
0

e−βUNβ
dUN
dV

dr1dr2...drN (S62)

It is known that:
dUN
dV

= N
d

dV
ubond(r1, r2) (S63)

This is because all the bonds are identical, and ubond(r) is a type of two-body interaction. In
addition, by definition, for a single chain, we have:

g(1)(r1, r2) =
ρ−1V

∫∞
0
...
∫∞
0
e−βUNdr3dr4...drN

Z
(S64)

Therefore, we can rewrite Equation (S62) in spherical coordinates:

1

Z

(∂Z
∂V

)
N,T

= −4πNρ

∫ ∞
0

g(1)(r)βr2
dubond
dV

dr = −4πNρ

3V

∫ ∞
0

g(1)(r)βr3
dubond
dr

dr (S65)

Note that ρb = Nρ. Then we have:

P1 = −4πρb
3V

∫ ∞
0

g(1)(r)r3
dubond
dr

dr (S66)

Honnell et al.6 also demonstrated similar results. We then obtained Equation (30) by the
fact that P (r) = g(1)(r)/V .
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