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SUPPLEMENTAL MATERIAL

S1 \Variation of Plateau border radius between

two nodes for the case of a Kelvin foam

In subsection 5.2.1 we have derived a functional form for the vari-
ation of the Plateau border radius r(x) between two nodes in a dry
foam. We have tested the applicability of this form using Surface
Evolver data for the familiar case of a Kelvin foam, in which all
nodes are of the tetrahedral type. In this case eqn. (18) reduces to
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Figure S1 shows numerical Surface Evolver data for the longi-
tudinal variation of Plateau border radius r(x) for liquid fraction
¢ =0.01 and ¢ = 0.04, respectively. Away from the two nodes the
data is well described by the functional form of eqns. (15) and
(S-1.

The fitted value for the node constant o depends critically on
the value of L in eqn. (18). Taking L as the edge length of
a Kelvin foam would for our simple model lead to an overlap
of the Plateau borders close to a node. We may define a short-
ened effective Plateau border length via the meeting point of two
Plateau borders, as modelled by eqn. (15). The shortening is then
given by 2Ay, with Aq = ro(1 + @)/ (a/c1 + v/3tan(64/2)), where
0o = arccos(—1/3) = 109.47° is the vertex angle in the Kelvin foam.

A least square fit of the Plateau border profile then results in
o ~ 0.9. This value is roughly consistent with the estimate of
o ~0.56, as obtained from the variation of excess energy with lig-
uid fraction, see Appendix S2.3. A fit without the above length
correction results in o ~ 2.5.

Estimate of node constants can in principle also be obtained
from approximations of the vertex geometry, but we have not pur-
sued this.

S(x)= 2aeiﬁ cosh ( (S-1)

S2 Evaluation of constants in the energy expan-
sions of dry foams

We will in the following evaluate the numerical constants Eg ., E1,
E, and Ej; in the energy expansion of eqn. (23), i.e.

E(9)/(4R) = Eay — E1v/0 + E20 (1-exp[~E3/ /9] ). (5-2)

for the cases of a single bubble of volume %R37r arranged in an fec
foam (S2.1) and in a Kelvin (S2.3) foam, respectively. We will use
the lowest order expression eqn. (19) to relate liquid fraction ¢ to
the asymptotic Plateau border radius ry; we rewrite this as

L
vl
with geometrical constants ¢, = v/3 — /2, 2 = 3/(2v/2) (Kelvin),
A =9/(2v/3) (fcc,hep), L is the edge length of the corresponding
dry foam polyhedron of volume %R37r.
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Fig. S1 Variation of Plateau border radius r(x) = ro(1+ 6(x)) between two
vertices in a Kelvin foam at liquid fraction ¢ = 0.01 and ¢ = 0.04. The data
points are from Surface Evolver calculations (bubble volume 1), the solid
line is a fit to egns. (15) and (S-1), resulting in an estimate o ~0.9. The
dashed lines indicate the respective values of r.

Using the area reduction per Plateau border, eqn. (20), we ob-

tain
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Amy\/cgh \R )
The correction term (per Plateau border) due to the presence
of the nodes, eqn. (22), may be written as a function of liquid

fraction ¢,
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In the following we will evaluate the above expressions for both
a bubble in an fce foam (S2.1), and in a Kelvin foam (S2.3).

S$2.1 Energy per bubble in an fcc foam

The volume of a rhombic dodecahedron of side length L is given
by V = 16v/3/9L3, resulting in L/R = (”T\E> 1/3. The surface area
is A = (81/2)L?, leading to the normalised dry foam energy Egpy =

A/(47R%) = 8Y2(L/R)? ~ 1.10534 for an fec cell with flat faces.

In an fcc foam there are 24/3=8 Plateau borders per bubble.
From eqn. (S-4) the first energy correction term is thus given by
8Aar(9)/(4nR?) = E1/¢ with E| ~ —0.3894.

Each Plateau border connects two different types of nodes, cor-
responding to the vertex angles 6y = cos™!(—1/3) ~ 109.47° and
05 = cos~!(1/3) ~70.53°. The node correction per bubble is thus
given by 8An; , g(¢), see eqn. (S-5). This results in the final

form for the node correction as E,¢(1 — ¢ E3/V9)/(47R?) with
Ep ~0.305(a+B) and E3 = /ceA /1 ~ 1.646, where the sum o+ f3
needs to be determined from a one-parameter least square fit.

Figure 12 shows the Surface Evolver result for the excess energy
of a bubble in an fcc foam bubble, £(¢) = E(¢)/(4nR>y) — 1, as a
function of liquid fraction ¢. The data is well described by the one
parameter fit to the energy expansion of eqn. (S-2), resulting in
o+ =1.29+0.02.

Inserting o ~ 0.9 (from the fit of the Plateau border profile for
a Kelvin foam, Appendix S1) results in 8 ~ 0.4; inserting o ~ 0.56

S-1



(from the value obtained for the energy of a Kelvin foam, S2.3)
results in § ~0.7.

S$2.2 Energy difference between fcc and hep foams

The calculation of the node correction for a bubble in the hcp struc-
ture is slightly more elaborate. Of its 24 edges, 18 are identical to
those in fcc, while 3 edges have an a node at each end and length
%L, and the remaining 3 edges have a 8 node at each end and

length %L. This results in the following node correction per bub-

ble, % (18A}’LL<0"B)(V0) +3A"§L,a,a(r0) +3AH§LJM3 (”O)) .
The difference per bubble between the fcc and hep node cor-
rections is then readily computed as 2An; o g —Ang La.ar0) —

An%Lﬁﬁ (I’()).

Inserting for the node correction terms per Plateau border, An,
eqn. (22), and using eqn. (19)) for relating ry to ¢ results in the
following expression for the energy difference between fcc and hep
as a function of liquid fraction ¢,

(Efcc(¢) *Ehcp(q)))/(“'”Rz) =Es¢exp [*E3/\/$] X
X [Oc <exp {—E3/(3\/5)} - 1> +B (exp [+E3/(3\/$)] - 1)} .

(5-6)

The constants are given by E3 = /cgA/ci >~ 1.646 (the value of E3
for the fec foam) and E; = MT%)ET[ (%)2 ~ 0.059.
8
A two-parameter fit to eqn. (S-6) is shown in figure 13, resulting

in @ =0.824+0.02 and § = 0.20+0.01. This is roughly consistent
with the values obtained in the other estimates, see table 1.

$2.3 Kelvin foam

S$2.3.1 Energy

The volume of Kelvin’s tetrakaidecahedron of side length L is given
by V =8v/2L3, resulting in L/R = (ﬁ) 1/3. The surface areais A =
(6+12v/3)L?, leading to the normalised dry foam energy E,, =
A/(4nR?) = %E(L/R)2 ~ 1.0990 for a Kelvin cell with flat faces.
Energy minimisation using the Surface Evolver results in Ey,, ~
1.09725.

In a Kelvin foam there are 12 Plateau borders per bubble.
From eqn. (S-4) the first energy correction term is thus given by
12Aar(¢)/(4nR?) = E1/§ with E; ~ —0.384.

In the Kelvin structure all vertex angles are identical, the energy
correction due to the nodes is thus given by 12An; o «(¢), see eqn.
(S-5). This results in the final form for the node correction as
Ex¢(1 — e B3/V9) /(4nR?) with E; ~ 0.183c and E3 = /cgh /c; ~
1.051, where the node constant a needs to be determined from a
least square fit.

Figure S2 shows the Surface Evolver result for the excess energy
of a Kelvin bubble, £(¢) = E(¢)/(4nR>y) — 1, as a function of liquid
fraction ¢. The data is well described by the one-parameter fit
to the energy expansion of eqn. (S-2) over the entire range of
stability of this structure. The value of the node constant o ~ 0.56,
is lower than the estimate of this constant as obtained from fitting
the Plateau border profile (a ~ 0.9, see Figure S1).

$2.3.2 Further estimate of node constant o

There is yet a further route for establishing a value of the node
constant o in a Kelvin foam. Phelan et al. 3° obtained an expression
for ¢ as a function of ry from a Surface Evolver computation of
the volume of a single four-fold node, i.e. the node of the Kelvin
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Fig. S2 Excess energy £(¢) = E(¢)/(4nR*y) — 1 as a function of liquid
fraction ¢ for a bubble in a Kelvin structure. The black line results from a
one-parameter fit to the dry limit energy expansion, egn. (S-2), resulting
in the node-constant o ~ 0.56+0.01.

structure. A more accurate result (obtained in the same way) is
due to Koehler et al. 37 who obtained,

— e 2 o .
0 = Acg(ro/L) (”“Q)’ (S-7)
with A = 3/(2+/2) for the Kelvin structure, see section S2.
Such a relation may also be obtained from
L
0= /'chL72<r2(x)> = lchfl/ 2 (x)dx, (S-8)
0

with r(x) = ro(1+ 6(x)). Evaluating the integral to lowest order in
6 (x) results in

o= eyt (147 [ ax). (59)

and thus
"
0 = Acg(ro/L? (144era "2 (1 = exp[L/(erro)])) =
~ 2 o .
~ Acg(ro/L) (1 taera L) (5-10)
Comparing with the expression by Koehler et al.3’, eqn. (S-7),

we can thus identify 4c;@ = 1.17. This leads to o ~ 0.75, again
consistent with the other estimates for « reported above.
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