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SUPPLEMENTAL MATERIAL

S1 Variation of Plateau border radius between
two nodes for the case of a Kelvin foam

In subsection 5.2.1 we have derived a functional form for the vari-

ation of the Plateau border radius r�x) between two nodes in a dry
foam. We have tested the applicability of this form using Surface

Evolver data for the familiar case of a Kelvin foam, in which all

nodes are of the tetrahedral type. In this case eqn. �18) reduces to

δ �x) = 2αe
− L

2c1r� cosh

�
x−L

2c1r�

�

. �S-1)

Figure S1 shows numerical Surface Evolver data for the longi-

tudinal variation of Plateau border radius r�x) for liquid fraction
φ = �.�1 and φ = �.�4, respectively. Away from the two nodes the

data is well described by the functional form of eqns. �15) and

�S-1).

The fitted value for the node constant α depends critically on
the value of L in eqn. �18). Taking L as the edge length of

a Kelvin foam would for our simple model lead to an overlap

of the Plateau borders close to a node. We may define a short-

ened effective Plateau border length via the meeting point of two

Plateau borders, as modelled by eqn. �15). The shortening is then

given by 2∆α , with ∆α = r��1+α)/�α/c1 +
√

3tan�θα/2)), where
θα = arccos�−1/3) = 1�9.47o is the vertex angle in the Kelvin foam.

A least square fit of the Plateau border profile then results in

α � �.9. This value is roughly consistent with the estimate of
α � �.56, as obtained from the variation of excess energy with liq-

uid fraction, see Appendix S2.3. A fit without the above length

correction results in α � 2.5.
Estimate of node constants can in principle also be obtained

from approximations of the vertex geometry, but we have not pur-

sued this.

S2 Evaluation of constants in the energy expan­
sions of dry foams

We will in the following evaluate the numerical constants Edry, E1,

E2 and E3 in the energy expansion of eqn. �23), i.e.

E�φ)/�4πR2) = Edry −E1

�
φ +E2φ

�
1− exp

�
−E3/

�
φ
��

� �S-2)

for the cases of a single bubble of volume 4
3 R3π arranged in an fcc

foam �S2.1) and in a Kelvin �S2.3) foam, respectively. We will use

the lowest order expression eqn. �19) to relate liquid fraction φ to
the asymptotic Plateau border radius r�; we rewrite this as

r��φ) =
L

�
λcg

�
φ �S-3)

with geometrical constants cg =
√

3−π/2, λ = 3/�2
√

2) �Kelvin),

λ = 9/�2
√

3) �fcc,hcp), L is the edge length of the corresponding

dry foam polyhedron of volume 4
3 R3π.
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Fig� S1 Variation of Plateau border radius r�x) = r��1+δ �x)) between two

vertices in a Kelvin foam at liquid fraction φ = �.�1 and φ = �.�4. The data

points are from Surface Evolver calculations �bubble volume 1), the solid

line is a fit to eqns. �15) and �S-1), resulting in an estimate α � �.9. The

dashed lines indicate the respective values of r�.

Using the area reduction per Plateau border, eqn. �20), we ob-

tain

∆aL�φ)/�4πR2) =−
2
√

3−π

4π
�

cgλ

�
L

R

�2�
φ . �S-4)

The correction term �per Plateau border) due to the presence

of the nodes, eqn. �22), may be written as a function of liquid

fraction φ ,

∆nL�α�β �φ)/�4πR2) =
2
√

3−π

4π

c1

λcg

�
L

R

�2

×

× �α +β )φ
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−
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λcg
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√
φ

��

. �S-5)

In the following we will evaluate the above expressions for both

a bubble in an fcc foam �S2.1), and in a Kelvin foam �S2.3).

S2.1 Energy per bubble in an fcc foam

The volume of a rhombic dodecahedron of side length L is given

by V = 16
√

3/9L3, resulting in L/R =
�

π
√

3
4

�1/3
. The surface area

is � = �8
√

2)L2, leading to the normalised dry foam energy Edry =

�/�4πR2) = 8
√

2
4π �L/R)2 � 1.1�534 for an fcc cell with flat faces.

In an fcc foam there are 24/3=8 Plateau borders per bubble.

From eqn. �S-4) the first energy correction term is thus given by

8∆aL�φ)/�4πR2) = E1

√
φ with E1 �−�.3894.

Each Plateau border connects two different types of nodes, cor-

responding to the vertex angles θα = cos−1�−1/3) � 1�9.47o and

θβ = cos−1�1/3) � 7�.53o. The node correction per bubble is thus

given by 8∆nL�α�β �φ), see eqn. �S-5). This results in the final

form for the node correction as E2φ�1 − e−E3/
√

φ )/�4πR2) with
E2 � �.3�5�α+β ) and E3 =

�
cgλ/c1 � 1.646, where the sum α+β

needs to be determined from a one-parameter least square fit.

Figure 12 shows the Surface Evolver result for the excess energy

of a bubble in an fcc foam bubble, ε�φ) = E�φ)/�4πR2γ)− 1, as a

function of liquid fraction φ . The data is well described by the one
parameter fit to the energy expansion of eqn. �S-2), resulting in

α +β = 1.29��.�2.

Inserting α � �.9 �from the fit of the Plateau border profile for
a Kelvin foam, Appendix S1) results in β � �.4; inserting α � �.56
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�from the value obtained for the energy of a Kelvin foam, S2.3)

results in β � �.7.

S2.2 Energy difference between fcc and hcp foams

The calculation of the node correction for a bubble in the hcp struc-

ture is slightly more elaborate. Of its 24 edges, 18 are identical to

those in fcc, while 3 edges have an α node at each end and length
4
3 L, and the remaining 3 edges have a β node at each end and

length 2
3 L. This results in the following node correction per bub-

ble, 1
3

�
18∆nL�α�β )�r�)+3∆n 4

3
L�α�α �r�)+3∆n 2

3
L�β �β �r�)

�
.

The difference per bubble between the fcc and hcp node cor-

rections is then readily computed as 2∆nL�α�β − ∆n 4
3

L�α�α �r�)−

∆n 2
3

L�β �β �r�).

Inserting for the node correction terms per Plateau border, ∆n,

eqn. �22), and using eqn. �19)) for relating r� to φ results in the
following expression for the energy difference between fcc and hcp

as a function of liquid fraction φ ,

�E f cc�φ)−Ehcp�φ))/�4πR2) = E4φ exp
�
−E3/

�
φ
�
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×
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α
�

exp
�
−E3/�3

�
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�
−1

�
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�
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�
φ)

�
−1

��
.

�S-6)

The constants are given by E3 =
�

cgλ/c1 � 1.646 �the value of E3

for the fcc foam) and E4 =
2
√

3−π
π

c1

λcg

�
L
R

�2
� �.�59.

A two-parameter fit to eqn. �S-6) is shown in figure 13, resulting

in α = �.82� �.�2 and β = �.2�� �.�1. This is roughly consistent

with the values obtained in the other estimates, see table 1.

S2.3 Kelvin foam

S2.3.1 Energy

The volume of Kelvin’s tetrakaidecahedron of side length L is given

byV = 8
√

2L3, resulting in L/R=
�

π
6
√

2

�1/3
. The surface area is �=

�6+ 12
√

3)L2, leading to the normalised dry foam energy Edry =

�/�4πR2) = 6+12
√

3
4π �L/R)2 � 1.�99� for a Kelvin cell with flat faces.

Energy minimisation using the Surface Evolver results in Edry �
1.�9725.

In a Kelvin foam there are 12 Plateau borders per bubble.

From eqn. �S-4) the first energy correction term is thus given by

12∆aL�φ)/�4πR2) = E1

√
φ with E1 �−�.384.

In the Kelvin structure all vertex angles are identical, the energy

correction due to the nodes is thus given by 12∆nL�α�α �φ), see eqn.
�S-5). This results in the final form for the node correction as

E2φ�1− e−E3/
√

φ )/�4πR2) with E2 � �.183α and E3 =
�

cgλ/c1 �
1.�51, where the node constant α needs to be determined from a
least square fit.

Figure S2 shows the Surface Evolver result for the excess energy

of a Kelvin bubble, ε�φ) = E�φ)/�4πR2γ)−1, as a function of liquid

fraction φ . The data is well described by the one-parameter fit
to the energy expansion of eqn. �S-2) over the entire range of

stability of this structure. The value of the node constant α � �.56,

is lower than the estimate of this constant as obtained from fitting

the Plateau border profile �α � �.9, see Figure S1).

S2.3.2 Further estimate of node constant α

There is yet a further route for establishing a value of the node

constant α in a Kelvin foam. Phelan et al.36 obtained an expression
for φ as a function of r� from a Surface Evolver computation of

the volume of a single four-fold node, i.e. the node of the Kelvin
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Fig� S2 Excess energy ε�φ) = E�φ)/�4πR2γ)− 1 as a function of liquid

fraction φ for a bubble in a Kelvin structure. The black line results from a

one-parameter fit to the dry limit energy expansion, eqn. �S-2), resulting

in the node-constant α � �.56��.�1.

structure. A more accurate result �obtained in the same way) is

due to Koehler et al.37 who obtained,

φ = λcg�r�/L)2
�

1+1.17
r�

L

�
� �S-7)

with λ = 3/�2
√

2) for the Kelvin structure, see section S2.
Such a relation may also be obtained from

φ = λcgL−2�r2�x)�= λcgL−1
� L

�
r2�x)dx� �S-8)

with r�x) = r��1+δ �x)). Evaluating the integral to lowest order in
δ �x) results in

φ = λcg�r�/L)2

�

1+
2

L

� L

�
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�

� �S-9)

and thus

φ � λcg�r�/L)2
�

1+4c1α
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L
�1− exp [−L/�c1r�)])
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�
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Comparing with the expression by Koehler et al.37, eqn. �S-7),

we can thus identify 4c1α = 1.17. This leads to α � �.75, again

consistent with the other estimates for α reported above.
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