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SUPPLEMENTAL MATERIAL

S1 Variation of Plateau border radius between
two nodes for the case of a Kelvin foam

In subsection 5.2.1 we have derived a functional form for the vari-

ation of the Plateau border radius r�x) between two nodes in a dry
foam. We have tested the applicability of this form using Surface

Evolver data for the familiar case of a Kelvin foam, in which all

nodes are of the tetrahedral type. In this case eqn. �18) reduces to

δ �x) = 2αe
− L

2c1r� cosh

�
x−L

2c1r�

�

. �S-1)

Figure S1 shows numerical Surface Evolver data for the longi-

tudinal variation of Plateau border radius r�x) for liquid fraction
φ = �.�1 and φ = �.�4, respectively. Away from the two nodes the

data is well described by the functional form of eqns. �15) and

�S-1).

The fitted value for the node constant α depends critically on
the value of L in eqn. �18). Taking L as the edge length of

a Kelvin foam would for our simple model lead to an overlap

of the Plateau borders close to a node. We may define a short-

ened effective Plateau border length via the meeting point of two

Plateau borders, as modelled by eqn. �15). The shortening is then

given by 2∆α , with ∆α = r��1+α)/�α/c1 +
√

3tan�θα/2)), where
θα = arccos�−1/3) = 1�9.47o is the vertex angle in the Kelvin foam.

A least square fit of the Plateau border profile then results in

α � �.9. This value is roughly consistent with the estimate of
α � �.56, as obtained from the variation of excess energy with liq-

uid fraction, see Appendix S2.3. A fit without the above length

correction results in α � 2.5.
Estimate of node constants can in principle also be obtained

from approximations of the vertex geometry, but we have not pur-

sued this.

S2 Evaluation of constants in the energy expan
sions of dry foams

We will in the following evaluate the numerical constants Edry, E1,

E2 and E3 in the energy expansion of eqn. �23), i.e.

E�φ)/�4πR2) = Edry −E1

�
φ +E2φ

�
1− exp

�
−E3/

�
φ
��

� �S-2)

for the cases of a single bubble of volume 4
3 R3π arranged in an fcc

foam �S2.1) and in a Kelvin �S2.3) foam, respectively. We will use

the lowest order expression eqn. �19) to relate liquid fraction φ to
the asymptotic Plateau border radius r�; we rewrite this as

r��φ) =
L

�
λcg

�
φ �S-3)

with geometrical constants cg =
√

3−π/2, λ = 3/�2
√

2) �Kelvin),

λ = 9/�2
√

3) �fcc,hcp), L is the edge length of the corresponding

dry foam polyhedron of volume 4
3 R3π.
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Fig� S1 Variation of Plateau border radius r�x) = r��1+δ �x)) between two

vertices in a Kelvin foam at liquid fraction φ = �.�1 and φ = �.�4. The data

points are from Surface Evolver calculations �bubble volume 1), the solid

line is a fit to eqns. �15) and �S-1), resulting in an estimate α � �.9. The

dashed lines indicate the respective values of r�.

Using the area reduction per Plateau border, eqn. �20), we ob-

tain

∆aL�φ)/�4πR2) =−
2
√

3−π

4π
�

cgλ

�
L

R

�2�
φ . �S-4)

The correction term �per Plateau border) due to the presence

of the nodes, eqn. �22), may be written as a function of liquid

fraction φ ,

∆nL�α�β �φ)/�4πR2) =
2
√

3−π

4π

c1

λcg

�
L

R

�2

×

× �α +β )φ
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−
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λcg
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√
φ

��

. �S-5)

In the following we will evaluate the above expressions for both

a bubble in an fcc foam �S2.1), and in a Kelvin foam �S2.3).

S2.1 Energy per bubble in an fcc foam

The volume of a rhombic dodecahedron of side length L is given

by V = 16
√

3/9L3, resulting in L/R =
�

π
√

3
4

�1/3
. The surface area

is � = �8
√

2)L2, leading to the normalised dry foam energy Edry =

�/�4πR2) = 8
√

2
4π �L/R)2 � 1.1�534 for an fcc cell with flat faces.

In an fcc foam there are 24/3=8 Plateau borders per bubble.

From eqn. �S-4) the first energy correction term is thus given by

8∆aL�φ)/�4πR2) = E1

√
φ with E1 �−�.3894.

Each Plateau border connects two different types of nodes, cor-

responding to the vertex angles θα = cos−1�−1/3) � 1�9.47o and

θβ = cos−1�1/3) � 7�.53o. The node correction per bubble is thus

given by 8∆nL�α�β �φ), see eqn. �S-5). This results in the final

form for the node correction as E2φ�1 − e−E3/
√

φ )/�4πR2) with
E2 � �.3�5�α+β ) and E3 =

�
cgλ/c1 � 1.646, where the sum α+β

needs to be determined from a one-parameter least square fit.

Figure 12 shows the Surface Evolver result for the excess energy

of a bubble in an fcc foam bubble, ε�φ) = E�φ)/�4πR2γ)− 1, as a

function of liquid fraction φ . The data is well described by the one
parameter fit to the energy expansion of eqn. �S-2), resulting in

α +β = 1.29��.�2.

Inserting α � �.9 �from the fit of the Plateau border profile for
a Kelvin foam, Appendix S1) results in β � �.4; inserting α � �.56
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�from the value obtained for the energy of a Kelvin foam, S2.3)

results in β � �.7.

S2.2 Energy difference between fcc and hcp foams

The calculation of the node correction for a bubble in the hcp struc-

ture is slightly more elaborate. Of its 24 edges, 18 are identical to

those in fcc, while 3 edges have an α node at each end and length
4
3 L, and the remaining 3 edges have a β node at each end and

length 2
3 L. This results in the following node correction per bub-

ble, 1
3

�
18∆nL�α�β )�r�)+3∆n 4

3
L�α�α �r�)+3∆n 2

3
L�β �β �r�)

�
.

The difference per bubble between the fcc and hcp node cor-

rections is then readily computed as 2∆nL�α�β − ∆n 4
3

L�α�α �r�)−

∆n 2
3

L�β �β �r�).

Inserting for the node correction terms per Plateau border, ∆n,

eqn. �22), and using eqn. �19)) for relating r� to φ results in the
following expression for the energy difference between fcc and hcp

as a function of liquid fraction φ ,

�E f cc�φ)−Ehcp�φ))/�4πR2) = E4φ exp
�
−E3/

�
φ
�
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×
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α
�

exp
�
−E3/�3

�
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�
−1
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�
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�
φ)

�
−1
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.

�S-6)

The constants are given by E3 =
�

cgλ/c1 � 1.646 �the value of E3

for the fcc foam) and E4 =
2
√

3−π
π

c1

λcg

�
L
R

�2
� �.�59.

A two-parameter fit to eqn. �S-6) is shown in figure 13, resulting

in α = �.82� �.�2 and β = �.2�� �.�1. This is roughly consistent

with the values obtained in the other estimates, see table 1.

S2.3 Kelvin foam

S2.3.1 Energy

The volume of Kelvin’s tetrakaidecahedron of side length L is given

byV = 8
√

2L3, resulting in L/R=
�

π
6
√

2

�1/3
. The surface area is �=

�6+ 12
√

3)L2, leading to the normalised dry foam energy Edry =

�/�4πR2) = 6+12
√

3
4π �L/R)2 � 1.�99� for a Kelvin cell with flat faces.

Energy minimisation using the Surface Evolver results in Edry �
1.�9725.

In a Kelvin foam there are 12 Plateau borders per bubble.

From eqn. �S-4) the first energy correction term is thus given by

12∆aL�φ)/�4πR2) = E1

√
φ with E1 �−�.384.

In the Kelvin structure all vertex angles are identical, the energy

correction due to the nodes is thus given by 12∆nL�α�α �φ), see eqn.
�S-5). This results in the final form for the node correction as

E2φ�1− e−E3/
√

φ )/�4πR2) with E2 � �.183α and E3 =
�

cgλ/c1 �
1.�51, where the node constant α needs to be determined from a
least square fit.

Figure S2 shows the Surface Evolver result for the excess energy

of a Kelvin bubble, ε�φ) = E�φ)/�4πR2γ)−1, as a function of liquid

fraction φ . The data is well described by the one-parameter fit
to the energy expansion of eqn. �S-2) over the entire range of

stability of this structure. The value of the node constant α � �.56,

is lower than the estimate of this constant as obtained from fitting

the Plateau border profile �α � �.9, see Figure S1).

S2.3.2 Further estimate of node constant α

There is yet a further route for establishing a value of the node

constant α in a Kelvin foam. Phelan et al.36 obtained an expression
for φ as a function of r� from a Surface Evolver computation of

the volume of a single four-fold node, i.e. the node of the Kelvin
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Fig� S2 Excess energy ε�φ) = E�φ)/�4πR2γ)− 1 as a function of liquid

fraction φ for a bubble in a Kelvin structure. The black line results from a

one-parameter fit to the dry limit energy expansion, eqn. �S-2), resulting

in the node-constant α � �.56��.�1.

structure. A more accurate result �obtained in the same way) is

due to Koehler et al.37 who obtained,

φ = λcg�r�/L)2
�

1+1.17
r�

L

�
� �S-7)

with λ = 3/�2
√

2) for the Kelvin structure, see section S2.
Such a relation may also be obtained from

φ = λcgL−2�r2�x)�= λcgL−1
� L

�
r2�x)dx� �S-8)

with r�x) = r��1+δ �x)). Evaluating the integral to lowest order in
δ �x) results in

φ = λcg�r�/L)2

�

1+
2

L

� L

�
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�

� �S-9)

and thus

φ � λcg�r�/L)2
�

1+4c1α
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L
�1− exp [−L/�c1r�)])
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�
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Comparing with the expression by Koehler et al.37, eqn. �S-7),

we can thus identify 4c1α = 1.17. This leads to α � �.75, again

consistent with the other estimates for α reported above.

S-2


