
Supporting Information: Systematic Study of

Nanocrystal Clusters Assembled by Solvent

Evaporation

Elizabeth Macias, Tommy Waltmann, and Alex Travesset∗

Department of Physics & Astronomy and Ames Laboratory - USDOE, Iowa State

University, Ames, IA 50011, USA

E-mail: trvsst@ameslab.gov

Pressure in different solvents
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Figure S1: Simulated pressure, in blue, plotted against the calculated pressure Eq. 4, in
orange for (a) Decane, (b) Nonane, and (c) Octane.
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Pressure as a Function of Average Density

Fig. S2 shows pressure vs ρ̄, for Decane, Nonane, and Octane. For Decane, we note that

the pressure is negative for densities approximately below 700 kg
m3 and positive above.

P − Pref =
1

kT
ln (

ρ

ρref
) (S1)

where Pref and ρref are reference points from the plot and kT is the isothermal compress-

ibility. This equation is derived from the following thermodynamic relationship,

∂P

∂ρ
T,N =

1

kTρ
(S2)

for a single phase system where the number of particles and the temperature is fixed we

estimate the isothermal compressibility. From the fit, we see that kT = 8.66× 10−05 atm−1,

kT = 8.06 × 10−05 atm−1, kT = 7.34 × 10−05 atm−1 and for Decane, Nonane, and Octane

respectively. There are large errors in the pressure calculation, since fluctuations in pressure

are related to fluctuations in temperature according to

∆P =
β

kT
∆T (S3)

where β is the Boltzmann constant. Fig. S2 shows ∆P
∆T

versus average density for Decane,

Nonane and Octane. Therefore, We see that we have fluctuations of around 10 bar
K

for the

lower end of the density range. The maroon vertical line corresponds to the experimental

liquid density while the orange line corresponds to the density, at which the solvent appears

to be pure liquid.
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Figure S2: Left: The pressure for pure (a) Decane, (c) Nonane, and (e) Octane. The
compressibility is kT = 8.66 × 10−05 atm−1, kT = 8.06 × 10−05 atm−1, and kT = 7.34 ×
10−05 atm−1 for Decane, Nonane, and Octane respectively. Right: Fluctuation in pressure
for (b) Decane, (d) Nonane, and (f) Octane. The maroon vertical line corresponds to the
experimental liquid density while the orange line corresponds to the density, from Fig. S3,
at which the solvent appears to be pure liquid.



Phase coexistence as a function of average densities

Fig. S3 shows the particle distributions vs average densities. We see that as we increase

the average density, we go from having two peaks in our distribution to one peak. For the

case where the system has two peaks, we can interpret the lower and higher density peaks as

those which correspond to the gas and liquid particles, respectively. As for the single-peak

case, we can interpret that as due to a system with only liquid particles. Thus, we interpret

the transition from two to one peaks as the system transitioning from liquid-gas coexistence

to a liquid phase.

Moreover, we plot the gray and maroon vertical lines that correspond to the experimental

saturation liquid and vapor particle densities, respectively, and we see that the lines match

with the distribution peaks. This further reassures our interpretation. The Decane saturated

liquid and vapor densities for 420 K were taken from ref1 while the Nonane and Octane

saturated liquid and vapor densities at 387 K were extrapolated from data provided in ref2.

The referenced Octane and Nonane data is presented in tables S1 and S2 respectively.

(a) Decane (b) Nonane (c) Octane

Figure S3: Density distribution functions of (a) Decane (b) Nonane and (c) Octane for
different average densities. For each average density, we ran the simulation for 1E6 time
steps and distributed the data over 99 time frames. Therefore, we constructed the density
distribution by accumulating the particle data from all 999 frames. The gray and maroon
vertical lines correspond to the experimental saturation liquid and vapor particle densities,
respectively. The experimental values for saturation liquid and vapor densities are, Decane:
ρl = 635.0 kg

m3 and ρv = 2.816 kg
m3 ; Nonane: ρl = 641.058 kg

m3 and ρv = 1.3875 kg
m3 ; Octane:

ρl = 622.151 kg
m3 and ρv = 2.70495 kg

m3 .



Table S1: Pure Nonane saturated liquid(vapor)densities, ρl(ρg), for different values of tem-
perature. This data was used to extrapolate the saturated liquid and vapor densities at 387
K and was derived from ref2. The density was converted from ml

mol
to kg

m3 .

Temperature/K
361 367 373 378 384

ρl/
kg
m3 663.12 658.085 653.025 648.76 643.65

ρg/
kg
m3 0.57448 0.71319 0.8778 1.0373 1.25865

Temperature/K
390 396 401 407

ρl/
kg
m3 638.46 633.229 628.82 623.50

ρg/
kg
m3 1.5163 1.8146 2.0974 2.4821

Table S2: Pure Octane saturated liquid(vapor)densities, ρl(ρg), for different values of tem-
perature. This data was used to extrapolate the saturated liquid and vapor densities at 387
K and was derived from ref2. The density was converted from ml

mol
to kg

m3 .

Temperature/K
360 368 376 384 392

ρl/
kg
m3 646.377 639.32 632.175 624.91 617.547

ρg/
kg
m3 1.1711 1.5214 1.95057 2.4708 3.0950

Temperature/K
400 408

ρl/
kg
m3 610.028 602.40

ρg/
kg
m3 3.83778 4.7147



Supplementary Results for Different Radius
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Figure S4: To the left: The droplet radius is in grey. That for the liquid-only and liquid +
interface are purple and maroon. The blue vertical line corresponds to the density, from the
figure to the right, at which we computed the local density distribution. To the right: The
local density with respect to the center of a droplet for a system with mean density 15 kg

m3 .
The light-blue and cyan horizontal bars correspond to mean liquid and vapor densities (ρ̄l
and ρ̄g), respectively. The purple and maroon vertical lines correspond to the liquid and
interface droplet radius. Decane: ρ̄l = 655.5 kg

m3 , ρ̄g = 1.104 kg
m3 ; Nonane: ρ̄l = 697.7 kg

m3 ,

ρ̄g = 0.491 kg
m3 ; Octane: ρ̄l = 649.3 kg

m3 , ρ̄g = 1.971 kg
m3 .



(a) Decane (b) Nonane (c) Octane

Figure S5: Left: Pair Separation with evaporation. Right: Pair+Solvent droplet radius. The
three plots are shown for Decane (top row), Nonane (middle row) and Octane (bottom row).

(a) (b) (c)

Figure S6: (a).4-N+Octane Average Separation with Octane evaporation.(b) 4-N+Octane
Separation for different NC pairs. (c).4-N+Octane droplet radius.



NC Structures

(a) N=4, Tetrahedron (b) N=5, Square pyramid (c) N=6, Regular Octahe-
dron

(d) N=7, Pentagonal Bipyra-
mid

(e) N=8, Biaugmented trian-
gular prism

(f) N=9, Gyroelongated
Square pyramid

Figure S7: Equilibrium structures: N=4, 5, 6, 7, 8, 9.



(a) N=10, Spheno-
corona

(b) N=13, Icosahedron
(c) N=15, Z14 Frank
Kasper Phase

(d) N=18, Equatori-
ally pentacapped axial
bicapped pentagonal
prism3

(e) N=21, Z20 (f) N=23

Figure S8: Equilibrium structures: N=10, 13, 15, 18, 21, 23.

(a) N=25 (b) N=27 (c) N=28

(d) N=29

Figure S9: Equilibrium structures: N=25, 27, 28, 29.
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(a) Top left: top, middle, and bottom section
of 3D stick-figure representation of N=23
structure. Bottom Left: stick-figure repre-
sentation with NC cores at their respective
vertices. Right: 2D layout of N=23 struc-
ture.
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(b) Structural Analysis for N=25. left: Ro-
tation of top left structure, about the axis in
the figure, to the side 2. Right: display of
NC cores.
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(c) Structural Analysis for N=27.
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Interior nanocrystals

(d) Structural Analysis for N=28.

Figure S10: Structural Illustration of N=23, 25, 27, 28 NC-configurations.

Side 2
2D Layout

Side 1 Side 2 - Nanocrystal core

Side 1
2D Layout

Figure S11: Structural Analysis for N=29. The little grey figures indicate what is half
the grey area of the larger figures. They indicate half the area since the larger figures are
symmetric in their 2D layout.



NC Structures compared to Cambridge database
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Figure S12: Comparison of our structures with respect to those in the Cambridge database4

for Lennard-Jones potential. The two-image table cells correspond to ”back” and ”front”
images of structures unless otherwise specified. The images were created using the Mayavi
python package for all structures in order to create a benchmarked analysis.
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Figure S13: Comparison of our structures with respect to those in the Cambridge database4

for Lennard-Jones potential. The two-image table cells correspond to ”back” and ”front”
images of structures unless otherwise specified. The images were created using the Mayavi
python package for all structures in order to create a benchmarked analysis.



Table of relaxation time for different NC-number

Table S3: Relaxation time for different NC-number.

Number of NCs (N) Relaxation time (τR/ns)

2 11.076
4 15.967
5 21.049
6 22.386
7 27.386
8 34.417
9 34.123
10 35.601
13 41.942
15 53.083
18 58.939
21 65.639
23 70.627
25 77.189
27 80.602
28 84.384
29 85.304



Supplementary results for liquid diffusion

We show some examples in Fig. S14 of our fits where use Eq. 13 to estimate the liquid dif-

fusion coefficient Dl. These fits were made for N=8,13,15,18 and Dl values were substituted

into Eq. 14 to calculate relaxation times, TR,l. TR,l results are in the main paper Fig. 10b
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Figure S14: Diffusion coefficient, Dl, from linear fits for N=18,15,13.



Solvent evaporation plots used for relaxation-time esti-

mates
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Figure S15: Number of Octane-gas particles, Ng, vs time. The blue dots are the simulation
data and the orange line is Eq. 6. By fitting the simulation data we get the relaxation time,
τR.
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Figure S16: Number of Octane-gas particles, Ng, vs time. The blue dots are the simulation
data and the orange line is Eq. 6. By fitting the simulation data we get the relaxation time,
τR.
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