SUPPLEMENTARY INFORMATION for

Elasto-morphology of P3HT:PCBM Bulk Heterojunction Organic Solar Cells

Joydeep Munshi¹, TeYu Chien², Wei Chen³ and Ganesh Balasubramanian^{1, Γ}

¹Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA 18015

²Department of Physics & Astronomy, University of Wyoming, Laramie, WY, USA 82071 ³Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 60208

Simulation procedure

We simulate solvent evaporation followed by thermal annealing of the solvent-free morphology. Typical solvent evaporation is simulated under an NPT (pressure constrained at 1 atm. and temperature at 298 K) ensemble by removing 1.25% of the CB molecules from the energy-minimized ternary mixture after every 3 ns (nanosecond) of time interval from a simulation box with 3-dimensional (3D) periodic boundary condition (PBC). Thermal annealing of the solvent-free mixture is achieved by gradually increasing the temperature from 298 K to 698 K over three successive computational steps. This leads to an overall simulation time ~ 3 μ s to prepare thermally annealed BHJ composite structures as shown in Figure S1. Simulation details for various cases simulated are presented in Table S1. Considering a mean time-scaling factor ~ 4, the BHJ morphology obtained from CGMD simulations is equivalent to ~ 12 μ s of all-atom MD simulation time as also explained elaborately in our previous effort [1]. After achieving solvent-free thermally annealed 3D microstructure, morphological parameters such as domain size, interfacial area to

^Г Corresponding author. Email: <u>bganesh@lehigh.edu</u>. Phone: +1-610-758-3784.

Address: Packard Laboratory 561, 19 Memorial Drive West, Bethlehem, PA 18015, USA.

volume ratio and percolation ratio are calculated from a spatially discretized structure as shown in Figure S2. Under the assumption of finite element scheme, we discretize the overall simulation box into small voxels of dimensions ~ $0.5 \times 0.5 \times 0.5$ nm³. The dimension of each voxel is limited by the smallest Van der Waals diameter of each CG beads considered.

Table S1: MD simulation parameters related to energy minimization, equilibration (under NVT and NPT ensembles)

 and the solvent evaporation simulation are listed. Velocity rescale and Parrinello-Rahman methods are used as

 thermostat and barostat, respectively, to achieve smooth convergence for temperature and pressure constraints.

	NVT Equilibration	NPT Equilibration	Solvent Evaporation	Thermal Annealing	Uniaxial straining (NE-CGMD)
Algorithm	Leap frog	Leap frog	Leap frog	Leap frog	Leap frog
Time step (fs)	20	20	20	20	20
LJ cut-off scheme	Verlet	Verlet	Verlet	Verlet	Verlet
Cut-off radius (<i>nm</i>)	1.1	1.1	1.1	1.1	1.1
Thermostat	Berendsen	Berendsen	Velocity- rescale	Velocity- rescale	Velocity- rescale
Barostat	Berendsen	Berendsen	Parrinello- Rahman	Parrinello- Rahman	Parrinello- Rahman
Coupling constant (<i>ps</i> ⁻¹)	1	2	15	15	15
Temperature (<i>K</i>)	298	298	298	298-698	298-698
Pressure (atm.)		1	1	1	1 (transverse)

	NVT Equilibration	NPT Equilibration	Solvent Evaporation	Thermal Annealing	Uniaxial straining (NE-CGMD)
Deformation					1×10 ⁻⁴
(nm/ps)					(longitudinal)

Weight ratio	Chain	РЗНТ	PCBM	Oligomer	Oligomer	Dimension of
(P3HT:PCBM)	length	molecules	molecules	weight	molecules	simulation
				fraction		box (nm ³)
				(%)		
1.0:0.5	120	119	1306	0	0	20×20×12.110
1.0:0.8	120	119	2090	0	0	20×20×14.335
1.0:1.0	120	119	2612	0	0	20×20×15.732
1.0:2.0	120	119	5225	0	0	20×20×14.360
1.0:0.8	120	119	2213	5	90	20×20×15.258
1.0:0.8	120	119	2319	10	180	20×20×15.957
1.0:0.8	120	119	2424	15	270	20×20×16.726
1.0:0.8	120	119	2529	20	360	20×20×17.441

 Table S2: Simulation details for different P3HT:PCBM BHJ active layers considered.

Figure S1: Simulated evaporation of P3HT:PCBM BHJ active layers from CB solvent at different time steps. More than 50% of CB is observed to evaporate at t = 300 ns. Morphology evaluation and dynamics of evaporation and thermal annealing demonstrate phase-separated BHJ microstructure.

Figure S2: Comparison of morphologies with spatial discretization (sampled along the x-y plane) for different weight ratios. (a) Snapshots of the BHJ morphology for 1:0.08 weight ratio of P3HT:PCBM. P3HT molecules are represented using grey beads and PCBM molecules are denoted using black beads. (b) The corresponding spatially discretized morphologies for 1:0.08 weight ratio. All the representations are across the x-y plane. White regions represent pure P3HT domains while black represents pure PCBM. Grey areas indicate a mixture of P3HT and PCBM.

References

S1. Munshi, J., R. Dulal, T. Chien, W. Chen, and G. Balasubramanian, Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT/PCBM Thin Films. ACS applied materials & interfaces, 2019. 11(18): p. 17056-17067.