Supporting Information

C₃-Symmetrical Tripodal Acylhydrazone Organogelator for the Selective Recognition of Cyanide ions in Gel and Solution phase: Practical Applications in Food Samples

Shilpa Sharma, Manisha Kumari, Narinder Singh*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India Corresponding Author: <u>nsingh@iitrpr.ac.in</u>

S. No.	Content	Page
		number
1.	Synthesis routes for the synthesis of ligand L1 and ligand L2	S2
2.	¹ H NMR Spectrum of Ligand L1	S3
3.	HRMS spectrum of Ligand L1	S3
4.	¹³ C NMR Spectrum of Ligand L1	S4
5.	FTIR spectra of Ligand L1	S4
6.	¹ H NMR Spectrum of Ligand L2	S5
7.	HRMS spectrum of Ligand L2	S5
8.	¹³ C NMR Spectrum of Ligand L2	S6
9.	FTIR spectra of Ligand L2	S6
10.	Gelation behaviors at room temperature	S7
11.	FT-IR spectrum of the powder of ligand L1 and organogelator L1	S7
12.	Time dependence fluorescence emission spectra of ligand L1 (90:10, H2O:DMSO) at 480 nm.	S8
13.	Fluorescence emission spectra of ligand L2 (10 μ M) in different DMSO: H ₂ O ratios.	S8
14.	UV-Vis. absorption spectra of ligand L1 (10 μ M) in DMSO	S9
15.	Detection limit showing the absorbance of ligand L1 at 416 nm as a function of CN ⁻ ions concentration	S9
16.	UV-Vis. response of Ligand L1 to different anions.	S10
17.	Interference studies of Ligand L1	S10
18.	Time Response of Ligand L1 (100 μ M) upon addition of different equiv. of CN ⁻ ions	S11
19.	pH response of ligand L1 by varying pH from 3 to 10.	S11
20.	UV-Vis. absorption spectra of ligand L2 in DMSO.	S12
21.	UV-Vis. absorption spectra of ligand L2 upon addition of 15 equiv. of	S12
	UN 100S.	G12
22.	The FI-IR spectrum of the organogelator L1 in presence of CN ⁻ ions.	<u>S13</u>
23.	The comparison of the ligand L1 for cyanide detection with other cyanide sensitive sensor	813

Scheme 1. Synthesis routes for the synthesis of ligand L1 and ligand L2

Fig. S1¹H NMR Spectrum of Ligand L1

Fig. S2 HRMS spectrum of Ligand L1

Fig. S3 ¹³C NMR Spectrum of Ligand L1

Fig. S4 FTIR spectra of Ligand L1

Fig. S5¹H NMR Spectrum of Ligand L2

Fig. S7 ¹³C NMR Spectrum of Ligand L2

Fig. S8 FTIR spectra of Ligand L2

S.No.	Solvent Ratio		Ligand L1	Ligand L2
	(DMSO: H_2O , v/v)			
1.	1	9	Ι	I
2.	2	8	PS	Ι
3.	3	7	PS	Ι
4.	4	6	PS	PS
5.	5	5	G	PS
6.	6	4	S	PS
7.	7	3	S	PS
8.	8	2	S	S
9.	9	1	S	S
10.	10	0	S	S

Table S1: Gelation behaviors at room temperature

S: solution; PS: partially soluble; G: gel; I: insoluble; for gels

Fig. S9 FT-IR spectrum of the powder of ligand L1 and organogelator L1 in xerogel form.

Fig. S10 Time dependence fluorescence emission spectra of ligand L1 (90:10, H₂O:DMSO) at 480 nm. (error)

Fig. S11 Fluorescence emission spectra of ligand L2 (10 μ M) in different DMSO: H₂O ratios.

Fig. S12 UV-Vis absorption spectra of ligand L1 (10 μ M) in DMSO.

Fig. S13 Detection limit showing the absorbance of ligand L1 at 416 nm as a function of CN⁻ ions concentration.

Table 2. Detection limit showing the absorbance of ligand L1 at 416 nm as a function of CN ⁻						
ions concentration						
S.no.		σ	Μ	3σ/Μ	Detection	
					limit	
1	ligand L1+15 equiv. of CN ⁻ ions	0.00079	1516.17	1.5 X 10 ⁻⁶	1.5µM	

 $*\sigma$ = Standard deviation of the blank sample

*M = corresponds to slope of the regression line.

Fig. S14 UV-Vis response of Ligand L1 to different anions

Fig. S15 Interference studies of Ligand L1 (10μ M) upon addition 15 equiv. of different ions (shown by blue bars) followed by 15 equivalent CN⁻ ions (shown by red bars). Where 1) Ligand L1 with 2) SCN⁻ 3) Br⁻ 4) I⁻ 5) Cl⁻ 6) PO₄³⁻ 7) NO₃⁻ 8) SO₃²⁻ 9) ClO₄⁻ 10) CH₃COO⁻ 11) F⁻ 12) CN⁻ ions.

Fig. S16 Time Response of Ligand L1 (10µM) upon addition of the different equivalent of CN⁻ ions

Fig. S17 pH response of ligand L1 by varying pH from 3 to 10.

Fig. S18 UV-Vis absorption spectra of ligand L2 (10µM) in DMSO.

Fig. S19 UV-Vis absorption spectra of ligand L2 (10µM) upon addition of 15 equiv. of CN⁻ ions.

Fig. S20 FT-IR spectrum of the organogelator L1 in the presence of CN⁻ ions.

Table 3: The comparison of the ligand L1 for cyanide detection with other cyanide sensitive sensors.					
Compounds	Sensing Method	Food Sample Analysis	Sensing with Organogelator	LOD	Reference
	Colorimetric changes	NO	NO	105μΜ	1
N N N N N N N N N N N N N N N N N N N	Colorimetric changes	NO	NO	20 μΜ	2
	Colorimetric changes	NO	NO	19.4 μM	3
OH V	Colorimetric changes	NO	NO	4.5 μΜ	4

References:

- 1 H. J. Lee, S. J. Park, H. J. Sin, Y. J. Na and C. Kim, *New J. Chem.*, 2015, **39**, 3900–3907.
- 2 E. J. Song, S. Kim, G. J. Park, S. J. Park, Y. W. Choi, C. Kim and J. Kim, *Tetrahedron Lett.*, 2014, 55, 6965–6968.
- 3 S. M. Kim, M. Kang, I. Choi, J. J. Lee and C. Kim, New J. Chem., 2016, 40, 7768–7778.
- 4 X. X. Ou, Y. L. Jin, X. Q. Chen, C. Bin Gong, X. B. Ma, Y. S. Wang, C. F. Chow and Q. Tang, *Anal. Methods*, 2015, 7, 5239–5244.
- 5 Y. Ding, T. Li, W. Zhu and Y. Xie, Org. Biomol. Chem., 2012, 10, 4201–4207.
- 6 Y. J. Na, G. J. Park, H. Y. Jo, S. A. Lee and C. Kim, New J. Chem., 2014, 38, 5769–5776.

7 C. Rao, Z. Wang, Z. Li, L. Chen, C. Fu, T. Zhu, X. Chen, Z. Wang and C. Liu, *Analyst*, 2020, **145**, 1062–1068.