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S1. Bending rigidity value of DOPC bilayers

The bending rigidity values of bilayer membranes made of the same lipid can vary across studies due to different
conditions, e.g., sugars, salt, buffers, dye concentration, as well as the preparation method [1]. Table I illustrates the
wide range of reported values of the bending rigidity values DOPC bilayers. Refer to Table II for the bending rigidity
values obtained in this study for different microscopy setting.

TABLE I: Different bending rigidity values for DOPC under different conditions and methods.PC, C and EP refer to phase
contrast, confocal and epi-flourescent microscopies used respectively in Fluctuation spectroscopy.

Method Rigidity (kBT ) Dye conc. (%mol) Buffer, Sugar (inside/outside) Salt Preparation

Fluctuation Spec. [EP,C] 14.9±0.4 [2] 15.8 NBD PC 100 mM Sucrose/100 mM Sucrose N/A Electroformation

Fluctuation Spec. [PC] 26.4±2.4 [3] 0 or 0.1 diIC18 10 mM Sucrose/10 mM Glucose 0.1 mM NaCl Electroformation

Fluctuation Spec. [PC] 26.8±2.4 [4] 1.0 Liss Rhod PE 450 mM Sucrose/500 mM Glucose N/A Electroformation

Fluctuation Spec. [PC] 29.8±2.4 [4] 1.0 Liss Rhod PE 450 mM Sucrose/500 mM Glucose N/A Phase Transfer

Fluctuation Spec. [EP] 22.3±0.5 [5] 0.12 Liss Rhod PE 100 mM Sucrose/200 mM Sucrose N/A Electroformation

Fluctuation Spec. [PC] 27.3±3.2 [6] N/A 100 mM Sucrose/100 mM Sucrose 2 mM NaN3 Electroformation

Fluctuation Spec. [PC] 22.7±2 [7] N/A 100 mM Sucrose/125 mM Glucose N/A Electroformation

Fluctuation Spec. [PC] 21.46±4 [8] N/A 100 mM Sucrose/125 mM Glucose N/A Electroformation

Fluctuation Spec. [PC] 19±1 [9] N/A 10 mM Sucrose/10 mM Glucose N/A Electroformation

Fluctuation Spec. [C] 19±1 [10] 0.8 TR DHPE 197 mM Sucrose/200 mM Glucose N/A Electroformation

Time Correlations 22.1 [11] N/A 300 mM Sucrose/307 mM Glucose N/A Electroformation

Micropipette Aspiration 20.7±2 [12] N/A 100 mM Sucrose/100 mM Glucose N/A Thin Film Hyd.

Micropipette Aspiration 22.8±2.2 [9] N/A 8 mM Sucrose/8 mM Glucose N/A Electroformation

X- Ray Scattering 20±2 [13] N/A Water/Water N/A Extrusion

X- Ray Scattering 20.2±1.4 [14] N/A Deionized water N/A Bilayer stack

Electrodeformation 21.9±2 [3] 0.1 diIC18 10 mM Sucrose/10 mM Glucose 0.1 mM NaCl Electroformation

Tether pulling 20±2 [15] 0.3 TR DHPE 300 mM Sucrose/80 mM Glucose 100 mM NaCl Electroformation

Neutron Spin Echo 20±1 [16] N/A D2O/D2O 0 mM Extrusion

Neutron Spin Echo 20±2 [17] N/A D2O/D2O 0 mM Extrusion

Neutron Spin Echo 30±4 [17] N/A D2O/D2O 150 mM Extrusion

Neutron Spin Echo 40±5 [17] N/A D2O/D2O 470 mM Extrusion

Interferometry 10.5±8.8 [18] N/A 295 mM Sucrose/300 mM Glucose N/A Electroformation
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TABLE II: Bending rigidity values obtained in this study for DOPC under different conditions and microscopy settings. Note
the sugar concentration is the same in all the experiments: 20 mM Sucrose inside/ 22 mM Glucose outside. The dye used is
TR DHPE and all the vesicles were formed via electroformation.

Microscopy Rigidity (kBT ) Dye conc. (%mol) Objective/NA Polarization Correction Pinhole (A.U)

Phase Contrast 19.4±2.1 0.2 100x/1.25 N/A N/A

Phase Contrast 22.5±1.5 0 40x/0.6 N/A N/A

Phase Contrast 23.3±1.6 0.2 40x/0.6 N/A N/A

Phase Contrast 21.0±2.0 0.2 40x/1.3 N/A N/A

Confocal 21.7±2.0 0.2 40x/1.3 Yes 1

Confocal 22.5±2.1 0.2 40x/0.6 Yes 1

Confocal 22.5±2.4 0.2 40x/0.6 Yes 0.3

Confocal 22.6±3.5 0.2 40x/0.6 Yes 2

Confocal 20.4±4.0 0.2 40x/0.6 No 1

Confocal 22.3±1.6 0.2 40x/1.3 No 1

Confocal 25.0±2.1 2.0 40x/0.6 Yes 1

S2. Methods

Vesicle preparation

Giant unilamellar vesicles (GUVs) were prepared using the classical electroformation method [19] from DOPC and
the fluorescent lipid Texas Red 1,2-hexadecanoyl-sn-glycero-3-phosphoethanolamine (TR-DHPE). The composition
of the GUVs explored are 99.8 % DOPC 0.2 % TR-DHPE and 98 % DOPC 2 % TR-DHPE (mole fractions). Stock
solutions of DOPC and TR-DHPE at 10 mg/ml and 1 mg/ml in chloroform were diluted to a final concentration of 4
mM for varying proportions. A small volume, 10 µl, of the solution was spread on the conductive surface of two glass
slides coated with indium tin oxide (ITO) (Delta Technologies). The glass slides were then stored under a vacuum
for 1–2 hours to remove traces of organic solvent. Afterwards, a 2 mm Teflon spacer was sandwiched between the
glass slides and the chamber was gently filled with 20 mM sucrose solution. The slides (conductive side facing inward)
were connected to an AC signal generator Agilent 33220A (Agilent Technology GmbH, Germany). An AC field of
voltage 1.5 V and frequency 10 Hz applied for 2 hours at room temperature, resulting in 10-50 µm sized vesicles.
The harvested vesicles were diluted 10 times in 22 mM glucose solution to obtain fluctuating vesicles. All GUVs were
analyzed within 8 hours of electoformation.

Microscopy and video recording

The equatorial fluctuations for both phase contrast and confocal mode were recorded with Leica TCS SP8 scanning
confocal microscope using a HCX PL APO 40x/ Numerical Aperture (NA) 0.6 Ph2 (air) objective and a HC PL APO
40x/ NA 1.3 (oil) objective. The pinhole size during the experiment was fixed to 1 AU (Airy units) unless stated
otherwise. Table 1 compiles the pixel size and focal depth for different experimental conditions. The scanning speed
was fixed to 1 kHz in bidirectional mode and the polarizer plates were rotated (100%) to remove the polarization effect
of the fluorescent dye unless stated otherwise. The dye was excited with a 561 nm laser (diode-pumped solid-state
laser) with 1.61% (laser intensity) HyD3 detector (hybrid) and the gain was fixed to 23%. Phase contrast imaging
was recorded with PCO CS dimax (PCO AG, Kelheim, Germany)) mounted on confocal microscope. 1500-2000
images were recorded at 3.83 frames per second (fps) with confocal and 60 fps with phase contrast imaging. The RGB
confocal images were converted to 8 bit and then inverted. We implemented an inbuilt MATLAB sobel disk filter
fspecial(′sobel′) and image normalization to increase the contrast of the contour.

In this section, we list different focal depths and pixel sizes for different microscopy and numerical aperture settings
for 40x objective. Focal depth or FWHM (full width half maximum) of phase contrast imaging was determined using
the standard formula d = λ

NA2 The wavelength of transmission light was assumed to be 550 nm.
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TABLE III: Different experimental conditions for video recording with 40x objective.

Microscopy Numerical Aperture Medium Pinhole size (AU) Focal depth (µm) Pixel Resolution (nm)

Phase contrast 0.6 Air 1 1.57 276.9

Phase contrast 1.3 Oil 1 0.35 158.7

Confocal 0.6 Air 1 1.61 252.7

Confocal 1.3 Oil 1 0.52 252.7

TABLE IV: Focal depth or FWHM (full width half maximum) for confocal imaging.

Medium Pinhole size (AU) Focal depth (µm)

Air 0.3 0.9

Air 1 1.6

Air 2 2.9

Sub-pixel contour recognition

The intensity profile in the radial direction for N wedges were determined from three different interpolation schemes
(Gaussian, parabolic and linear weighting of neighbouring pixel) for sub-pixel contour recognition. This was done
to check if different interpolation schemes affects the bending rigidity values due to uncertainty introduced at higher
wave-numbers for experimental vesicle contour fluctuations. The mean bending rigidity obtained was similar for all
the three schemes for the same vesicle. Figure (S1) illustrates the subpixel accuracy determination for a 35 µm radius
vesicle. The bending rigidities obtained was 22.0±3.0 kBT , 21.1±1.0 kBT and 21.9±2.2 kBT from Gaussian, parabolic
and linear interpolation schemes respectively.

S3. Polarization Effects

We analyzed the same vesicle with and without polarization effects. The polarization effects were corrected using
circular plates that were rotated 100%. Figure (S2) illustrates the effect of dye polarization for vesicles imaged with
different numerical apertures. Using one Anova test, we find a significant difference of 3 kBT for the 40x/0.6 NA case.
The difference tends to be negligible for 40x/1.3 NA case.

S4. Effect of Vesicle Size on Bending Rigidity Values

The bending rigidity obtained from confocal microscopy with low-resolution optics (e.g. 40x objective, NA 0.6,
1 AU, polarization correction) can be systematically underestimated if the vesicle population contains similar sized
vesicles. We demonstrate this by comparing the bending rigidity of the same vesicle imaged with confocal and phase-
contrast microscopy, see Figure (S3). Vesicles with smaller sizes yield apparently lower bending rigidity, see Fig.
S4 which further highlights the bias effect. For small vesicles, the out-of-focus signal gives rise to asymmetry in
the contour intensity (illustrated in Fig. 4a in the main text) which leads to errors in the contour detection and
underestimation of the bending rigidity. When the refractive index difference across the membrane is small (as is the
case in our experiments), phase contrast imaging does not suffer from this size bias.

S5. Bootstrapping resampling

Details about the various statistical techniques can be found in Ref. [20]. Here we explain the bootstrapping
sampling technique. A more rigorous reference is the textbook [21]. In practice, the finite amount of data or length of
experiment limits the accuracy to infer data confidently. Bootstrapping is an inference method about the population
from a given sample. In bootstrap-resamples, the population is in fact the sample and this quantity is known. This
allows to measure the quality of inference of the ’true’ sample from a re-sampled data. For example, let’s consider
the average mass of the human population world wide. It is difficult to measure the mass of every individual globally,
therefore, a small sample is measured. Let’s assume the sample size of N people. From that sample size, only one mean
can be measured. In order to have a reasonable estimate about the population statistics, we need to have variability
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Fig. S 1: Intensity profile for a vesicle contour obtained from confocal imaging. The contour recognition details are given in
[3]. The sub-pixel accuracy of the contour profile is determined based on (a) Gaussian, parabolic and (b) linear interpolations

Fig. S 2: Polarization effects. (a) Confocal images of the same vesicle with and without polarization effects for 40x/0.6 NA
case. The polarization effects were removed using circular plates that were rotated 100%. (b, c) Comparison between the same
vesicles for different numerical apertures. Using one Anova test, we find a significant difference of 3 kBT for 40x/0.6 NA case.
The difference tends to be negligible for 40x/1.3 NA case. Pinhole size is 1 AU.

of the mean that we computed. The simplest bootsampling statistics can be considered by taking the original data
N individuals and resampling to create a new sample of the same size N (e.g. we might ’resample’ 10 times from
[60,61,62,63,64,65,66,67] kg and get [61,64,63,63,60,60,62,65] kg). This process is repeated a large number of times,
100 to 10000, to create a histogram that be applied to any estimator testing. Bootstrap resampling was carried out
using MATLAB’s bootstrp ().

In the case of our experiments, the finite amount of data or length of experiment limits the accuracy to infer data
confidently. The bootstrap resampling requires choosing random replacement from a given data set and examining
each sample the same way. This way a particular data point from the original set can reappear randomly multiple
times in a particular bootstrap sample. The element size of the bootstrap sample is the same as the element size of
the original data. This technique allows to obtain uncertainty of the quantity one estimates.

Bootstrap resampling algorithm for estimating standard error [21]:
1. Obtain N independent bootstrap samples X∗1, X∗2, X∗3, ...X∗N , each consisting of n data values drawn with a
replacement from x where x = [x1, x2, x3...xn]. Note for estimating a standard error, the number N will ordinarily be
larger than 30 to satisfy the Central Limit Theorem. Computations allow to use a large number N such as 103 to 104.
2. Determine the bootstrap replication for every bootstrap resample:

ζ∗(b) = s(X∗b) b = [1, 2, 3, ..N ] (1)

where s() is a statistical function like sample mean. For example, if s(x) is the sample mean x̄ then S(X∗) is the
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Fig. S 3: Vesicle size effects. Every vesicle was imaged with confocal and phase contrast microscopy. Data are collected on
DOPC vesicles with different sizes. The dye concentration was 0.2 mol. Imaging was done with 40x objectives with NA 0.6, 1
AU and polarization correction.

Fig. S 4: Bootstrap method with 95% confidence to evaluate bending rigidity dependence on size of vesicles for different
numerical aperture (a) 40x/0.6 NA, (b) 40x/1.3 NA in phase contrast (P) or confocal(C) microcopy, and the pinhole sizes (c)
(blue AU 0.3 and red AU 2).

mean of bootstrap data set.
3. Compute the standard error SE by utilizing the standard deviation of N replications

SE =

[∑N
b=1[ζ∗(b)− ζ∗(.)]

N − 1

] 1
2

(2)

where ζ∗(.) =
∑N
b=1 ζ

∗(b)/N .

In our case we determine the SE of mean Pearson correlation using bootsampling statistics.

S6. Numerical simulations of vesicle contours

Mathematical Model

The total energy of the system is given by the Helfrich model[22] as Eq. (3) where κ is the bending rigidity, c1 and
c2 are the local radii curvatures, A is the total surface area, V is the interior volume of the vesicle, σ is the surface
tension, and p is the pressure difference across the membrane.

F =
κ

2

∫
A

(c1 + c2)2dA+ σA+ pV (3)
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For a quasi-spherical vesicle in equilibrium, the shape can be decomposed into spherical harmonics (Ylm) such that
the position of the surface is given by

R(θ, φ, t) = R0

(
1 +

lmax∑
l=0

l∑
m=−l

flm(t)Ylm(θ, φ)

)
(4)

where the characteristic radius R0 is given by V = 4
3πR

3
0. The spherical harmonics are defined as

Ylm = nlmPlm(cos θ)eimφ , nlm =

√
(2l + 1)(l −m)!

4π(l +m)!
(5)

Plm(cos θ) are the associated Legendre polynomials.
As l = 1 account for translational modes, for the sake of this paper, flm(t) will be restricted to f1m(t) = 0 for l = 1.

Furthermore, volume conservation requires that [23]

f00 =
−1√
4π

lmax∑
l=2

l∑
m=−l

|flm|2. (6)

Assuming there is no external fluid flow, the harmonic coefficients (flm) for l > 1 are described by the following

Fig. S 5: (a) A sketch of a GUV. (b) Time sequence of vesicle contours taken at time intervals of 1 s; the bending rigidity
is κ =1× 10−19 J and the membrane tension is σ =1× 10−9 N/m. The size of the vesicle is R0 = 10−5 m. (c) Helfrich mode
spectrum determined by the image detecting algorithm based on Ref. [3]. The spectrum was fitted with Equation 2 from the
main text to obtain the bending rigidity and membrane tension.

stochastic differential equation [23]

∂tflm = −τ−1
l flm + ζlm(t) (7)

where

τl =
ηexR

3
0

κΓl(λ)El
, Γl =

l(l + 1)

4l3 + 6l2 − 1 + (2l3 + 3l2 − 5) (λ− 1)
and El = (l + 2)(l − 1)

(
l(l + 1) + σ̄

)
. (8)

A tutorial derivation of the evolution equation and the relaxation time (in the absence of thermal noise) can be found
in Refs. [24, 25] The dimensionless tension is σ̄ = σR2

0/κ. λ = ηin/ηex is the ratio of viscosities of the solutions inside
and outside the vesicle. When λ = 1, our result for the relaxation time reduces to the one reported by Refs. [23, 26].
To make easier comparison with the result of Ref. [10], we can rewrite the relaxation time as

τl =
R3

0

κ

ηex

(
2l3 + 3l2 + 4

)
+ ηin

(
2l3 + 3l2 − 5

)
l(l + 1)(l + 2)(l − 1)

(
l(l + 1) + σ̄

) (9)

ζlm(t) is a stochastic term accounting for thermal noise; the corresponding time correlation is given as〈
ζlm(t)ζl′m′(t′)

〉
= (−1)m

2kBTΓl
ηexR3

0

δl,l′δm,−m′δ(t− t′). (10)
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The δ functions are the traditional Kronecker and Dirac delta functions. From Eq. 10, the variance of ζlm(t) is given
by 〈

|ζlm|2
〉

= 2
kBTΓl
ηexR3

0

= 2Σl. (11)

Numerical Method

At this point, it is convenient to decompose flm and ζlm into real and imaginary components such that flm(t) =
Xlm(t) + i Ylm(t) and ζlm(t) = alm(t) + i blm(t). As alm and blm are independent of each other then

〈
|ζlm|2

〉
=
〈
|alm|2

〉
+
〈
|blm|2

〉
= 2
〈
|alm|2

〉
= 2
〈
|blm|2

〉
= 2Σl (12)

Eq. (7) can then be rewritten as

∂tXlm = −τ−1
l Xlm + alm(t) (13)

and similarly for Ylm. As Eq. (13) is a simple Langevin equation, the exact time update [27] is given as

Xlm(t+ ∆t) = Xlm(t)e−∆t/τl +

[
1

2
Σ2
l τl
(
1− e−2∆t/τl

)]1/2

n (14)

such that ∆t is the time step size and n is a sample value from the normal distribution N (0, 1). In order to
properly resolve the dynamics of the higher order coefficient, a sufficiently small time step must be chosen so that
∆t << τlmax

. Yet as each harmonic coefficient is independent of each other, Eq. 14 can be evaluated for all Xlm and
Ylm simultaneously. Given all the harmonic coefficients (flm), the cross-section at the equator, R(θ = π/2), can easily
be computed using Eq. (4).

When running the numerical simulations, the user has some choice of which input parameters to specify. For
example, one can specify the effective surface tension (dimensionless) σ̄ and the largest incorporated mode lmax. In
this case, the vesicle’s excess is obtained from [23]

α =
kBT

2κ

[
5

6 + σ
+ ln

(
l2max + σ̄

12 + σ̄

)]
, (15)

Alternatively, one can specify α and σ̄, and Eq.(15) then provides the requisite lmax.
Here we demonstrate an example of a numerically simulated vesicle with predefined bending rigidity and membrane

tension. Figure (S5)b shows a time sequence of equatorial vesicle contours with bending rigidity of κ = 10−19 J and
membrane tension of σ = 10−9 N/m. The size of the vesicle is R0 = 10−5 m. By implementing our image detection
technique and fitting algorithm from Gracia et al.[3], we are able to reproduce the bending rigidity and membrane
tension respectively as κ = (1.00± 0.01)× 10−19 J and σ = (1.1± 0.2)× 10−9 N/m with the Helfrich spectrum given
in Figure (S5). Notably our image detection is able to resolve more than 45 shape fluctuation modes.

Simulating the Effect of Out-of-focus Signal

Due to a finite focal depth, the microscope imaging does not capture only the optical/fluorescence signal at the
focal (equatorial) plane. The out-of-focus signal results in gradient in the image intensity near the focal plane vesicle
contour.

To simulate this effect, we numerically projected the vesicle shape R(θ, φ, t) on the equatorial plane and assigned
intensity of the projected location, R(θ, φ, t) sin θ, given by

I(r, φ, t) =

∫ 2π

0

∫ π
2 +θfd

π
2−θfd

W (θ′) δ(φ− φ′) δ(r −R(θ′, φ′, t) sin θ′) dθ′dφ′, (16)

where π
2 ± θfd are the top and bottom of the microscope focal depth (FD), θfd = arctan(FD/R0). W (θ) is the

intensity weighting function

W (θ) =
1

W0
exp

[
− cos2(θ)

2 cos2(θfd)

]
(17)
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and W0 is the corresponding normalization constant. The resulting images of the equatorial plane at different focal
depth are illustrated in Figure S6a.

We varied the magnitude of the focal depth FD, from 0 to 0.3R0. The fluctuation spectra obtained for the
simulations are shown in Figure S6b for a vesicle sized R0 = 20µm with κ= 22 kBT and σ = 1.4×10−9 N/m. The
crossover mode qc =

√
σ̄ ∼ 3. The effect of the projections is only significant for modes q ≥ ∆−1, where ∆ = FD

R0
[10].

For smaller values of ∆ < 0.05, the projections have no effect - the spectra overlap implying same bending rigidity.
However, as the value of ∆ increases, more modes get affected by the projections resulting in an effective softening of
the membrane from 22 kBT to 19 kBT , see S6c.

Fig. S 6: a) Snapshot of vesicle equatorial contours at different ∆ = FD/R0. The simulated vesicle has bending rigidity=
22 kBT , membrane tension= 1.4×10−9 N/m and radius R0 = 20µm. Each image was acquired over 0.2 s (corresponding to
imaging rate of 5 fps). b) Fluctuation spectrum obtained at different ∆ from the numerical simulations c) Bending rigidity
obtained for different ∆. Here we have compared the experimental results with numerical simulations.

Fluctuations statistics: derivations of the basic results

Here we summarize the main results for the dynamics of a quasi-spherical vesicle.
Mean Squared Magnitude of the Fourier Modes: The dynamics of the spherical harmonics modes is governed by

the following Langevin equation,

∂flm
∂t

= −τ−1
l flm + ζlm (18)

where the relaxation time τl is given by Eq.(9) and the noise is〈
ζlm

〉
= 0 and

〈
ζ∗lm(t)ζl′m′(t′)

〉
=

2kBTΓl
ηexR3

0

δ(t− t′)δll′δmm′ . (19)
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The analytic solution to Eq. (18) is given by

flm(t) = e−t/τlflm(0) +

∫ t

0

e−(t−t′)/τlζlm(t′)dt′. (20)

and therefore

|flm(t)|2 = e−2t/τl |flm(0)|2 +

∫ t

0

e−(2t−t′)/τl
(
flm(0)ζ∗lm(t′) + flm(0)∗ζlm(t′)

)
dt′

+

∫ t

0

∫ t

0

e−(2t−t′−t′′)/τlζlm(t′)ζ∗lm(t′′)dt′dt′′. (21)

The ensemble average of
〈
|flm|2

〉
of Eq. (21) is then

〈
|flm|2

〉
= e−2t/τl |flm(0)|2 +

∫ t

0

e−(2t−t′)/τl

(
flm(0)

〈
ζ∗lm(t′)

〉
+ flm(0)∗

〈
ζlm(t′)

〉)
dt′

+

∫ t

0

∫ t

0

e−(2t−t′−t′′)/τl
〈
ζlm(t′)ζ∗lm(t′′)

〉
dt′dt′′. (22)

Using Eq. (19), Eq. (22) simplifies to〈
|flm|2

〉
= e−2t/τl |flm(0)|2 +

2kBTΓl
ηexR3

0

∫ t

0

e−2(t−t′)/τldt′. (23)

〈
|flm|2

〉
= e−2t/τl |flm(0)|2 +

kBTΓlτl
ηexR3

0

[
1− e−2t/τl

]
(24)

At long times, t >> τl, Eq. (24) simplifies to

〈
|flm|2

〉
=

kBTΓlτl
ηexR3

0

=
kBT

κ

[
(l + 2)(l − 1)

(
l(l + 1) + σ̄

)]−1

(25)

Recall σ̄ = σR2
0/κ. Since the dynamics of the different spherical harmonics modes are completely decoupled, we can

more generally say 〈
f∗lmfl′m′

〉
=
kBTΓlτl
ηexR3

0

=
kBT

κ

[
(l + 2)(l − 1)

(
l(l + 1)κ+ σ̄

)]−1

δll′δmm′ (26)

Next, we consider the contour of the GUV at the equator as a function of the spherical harmonic coefficients:

r(φ, t) = R0

(
1 +

qmax∑
q=0

uq(t)e
iqφ

)
= R0

(
1 +

lmax∑
l=0

l∑
m=−l

flm(t)Ylm(π/2, φ)
)
. (27)

The Fourier coefficient for the q-th mode is then given by

uq(t) =
1

2πR0

∫ 2π

0

r(φ, t)e−iqφdφ =

lmax∑
l=q

flq(t)
(
nlqPlq(0)eiqφ

)
e−iqφ (28)

as all the other terms integrate to zero. In the above equation, we have inserted the definition of the spherical
harmonic, Y(θ, φ) = nlmPlm(cos θ)eimφ (see Eq.(5)), which shows that the dependence on φ cancels out.

The mean squared amplitude of uq is then given by

〈
|uq|2

〉
=

lmax∑
l=q

lmax∑
l′=q

〈
f∗l′qflq

〉
nlqnl′qPlq(0)P ∗l′q(0). (29)
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Using Eq. (26), the above equation simplifies to

〈
|uq|2

〉
=

lmax∑
l=q

〈
|flq|2

〉
n2
lq|Plq(0)|2 (30)

〈
|uq|2

〉
= kBT

lmax∑
l=q

[
(l + 2)(l − 1)

(
l(l + 1)κ+ σR2

0

)]−1

n2
lq|Plq(0)|2 (31)

Eq.(31) follows q−3 behavior for bending dominated modes q >
√
σ̄ (and q−1 behavior for tension dominated modes

q <
√
σ̄).

Time Correlation for Fourier Modes: Time correlations present another useful metric to analyze the membrane
fluctuations. As the different spherical harmonics modes are independent, the average time correlations,

〈
uq(0)u∗q(t)

〉
=

lmax∑
l′=|q|

lmax∑
l′′=|q|

〈
fl′q(0) f∗l′′q(t)

〉
nl′qnl′′qPl′q(0) P ∗l′′q(0), (32)

can be simplified to

〈
uq(0)u∗q(t)

〉
=

lmax∑
l=|q|

〈
flq(0) f∗lq(t)

〉
n2
lq

∣∣∣Plq(0)
∣∣∣2 , (33)

Using (21), (32) can be rewritten as

〈
uq(0)u∗q(t)

〉
=

lmax∑
l=|q|

〈
|flq|2

〉
n2
lq

∣∣∣Plq(0)
∣∣∣2e−t/τl . (34)

Since the first term in (34) has both the smallest decay rate (τ−1
q ) and largest mean-squared amplitude, the time

correlation can be approximated to leading order as〈
uq(0)u∗q(t)

〉
=
〈
|fqq|2

〉
n2
qq

∣∣∣Pqq(0)
∣∣∣2e−t/τq . (35)

If we consider limit of undulations with short wavelengths (shorter than the vesicle radius), q � 1, then the leading
order decay rate can be approximated as

τ−1
q ≈ q3R−3

0 κ+ qR−1
0 σ

2(ηex + ηin)
=

κ

ηexR3
0

q3 + qσ̄

2(1 + λ)
(36)

which is the decay rate derived using planar fluctuations. However, we suggest using the exact decay rate from the
spherical harmonics as it is both more accurate and valid for all Fourier modes.

When comparing the time correlations in Fig.7, the exact decay rate, from the full spherical harmonics (SpH), is
immediately more accurate than if the planar membrane (PM) decay rate is used. To get the accuracy even better,
the higher order terms in Eq. (34) must be included. If all of the terms are included then the time correlation is
directly on top of the curve from produced by the numerical simulation. However, as it is not feasible to include
all the terms for real membranes, it is of interest to know how many terms are enough to sufficiently reproduce the
numerical simulations. As shown in Figure 5, the time correlation produced by including the first two terms in Eq.
(34 lies almost directly on top of the true solution. Including more terms would improve the accuracy further, but it
is not likely to be significant due to experimental error.
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Fig. S 7: Plots comparing the analytic approximations for time correlation for Fourier mode q = 5. The left plots the time
correlations using the exact spherical harmonic (SpH) decay rate and the less accurate planar membrane (PM) decay rate. The
right plots the time correlations for the SpH case using different number of terms. The black dots show the time correlations
computed from a numerical simulation using the following parameters as inputs. R0 = 3×10−5 m, κ = 5×10−19 J, σ = 4×10−8

N/m, lmax = 14

Cross-Spectral Density: Similar to time correlations, the Cross-Spectral Density (CSD) is given by〈
|uq(0)||uq(t)|

〉
−
〈
|uq|2(0)

〉
. (37)

For the sake of clarity of explanation, in this section we will use the leading order approximation of uq,

uq(t) ≈ fqq(t)nqqPq
(

cos
π

2

)
. (38)

Using (20), this can be rewritten as

uq(t) = e−t/τluq(0) + ζ̄q(t), (39)

where

ζ̄q = nqqPqq(0)

∫ t

0

e−(t−t′)/τlζlm(t′)dt′

is a random normally distributed Weiner process.
From (39), it is clear that uq(t) = ζ̄q(t) for large values of t. Furthermore, it is worth noting that all Fourier

modes, except q = 0, have both real and an imaginary component, uq = Aq + iBq, and that these two components
are independent of each other. Likewise, the thermal noise can be decomposed into independent real and imaginary
components: ζ̄q = ζ̄Aq + iζ̄Bq. The real component of Eq. (39) can then be written as

Aq(t) = Aq(0)e−t/τq + ζ̄Aq(t) (40)

and a similar expression for Bq.
Therefore, it can be shown that

〈
|uq(0)||uq(t)|

〉
=
〈
|uq(0)|

(
A2
q(t) +B2

q (t)
)1/2〉

=
〈
|uq(0)|

(
|ζ̄q|2(t) + 2

(
ζ̄Aq(t)Aq(0) + ζ̄Bq(t)Bq(0)

)
e−t/τq + |uq(0)|2e−2t/τq

)1/2〉
(41)
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If we assume that t >> tq, then we can perform the following expansion〈
|uq(0)||uq(t)|

〉
=
〈
|uq(0)|

〉〈
|ζ̄q(t)|

〉
+

(〈
|uq(0)|Aq(0)

〉〈 ζ̄Aq(t)
|ζ̄q(t)|

〉
+
〈
|uq(0)|Bq(0)

〉〈 ζ̄Bq(t)
|ζ̄q(t)|

〉)
e−t/τq

+
1

2

(〈|uq(0)|3
〉

〈
|ζ̄q(t)|

〉 − 〈 |uq(0)|
(
ζ̄Aq(t)Aq(0) + ζ̄Bq(t)Bq(0)

)2
|ζ̄q(t)|3

〉)
e−2t/τq +O

(
e−3t/τq

)
. (42)

The second term in (42) averages to zero due to the thermal noise factor. Therefore, to leading order, the CSD is
given as

〈
|uq(0)||uq(t)|

〉
−
〈
|uq(0)|

〉2

= Cqe
−2t/τq +O

(
e−3t/τq

)
(43)

where Cq is a normalization constant.

Therefore, the slowest decaying mode of the CSD is O
(
e−2t/τq

)
. This contradicts H. Zhou et al. [11] who give it as

O
(
e−t/τq

)
. This factor of two is a consequence that each Fourier coefficient has both a real and imaginary component

that are completely independent of each other.
Finally, users are recommended to use time correlations over CSD. CSD requires the same amount of work and

contains the same higher order error as the time correlation method. Yet, CSD has an additional layer of truncation
error introduced in the expansion in Eq.(42).
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Movie S1

Real-time video of the GUV from Figure 1 in the main text (DOPC labeled with 0.2 mol % TR-DHPE) acquired
with phase contrast microscopy. The vesicle radius is 29.6 µm.

Movie 2

Video of the GUV from Figure 1 in the main text (DOPC labeled with 0.2 mol % TR-DHPE) acquired with confocal
microscopy. The objective used is 40x/0.6 NA with the pinhole size 1 A.U. The polarization effect was corrected by
using circular rotation plates to have even intensities across the equatorial vesicle plane. The vesicle radius is 29.6
µm.

Movie S3

Real time video of the GUV from Figure 6 in the main text consisting of DOPC labeled with TR DHPE (0.8%)
acquired with confocal microscopy. The objective used is 40x/0.6 NA at 13.2 fps with the pinhole size 1 A.U. The
polarization effect was corrected by using circular rotation plates to have even intensities across the equatorial vesicle
plane.

Raw data

Raw data are available at https://dx.doi.org/10.17617/3.4p. This collection of raw data, consists of 4 folders
each containing zipped files of data.

In folder “Raw data - Fourier modes”, 2 different sets of experimental data are included: phase contrast (PC) and
confocal (C) microscopy on the same vesicle and confocal microscopy data with different pinhole sizes. The folder
contains excel sheets with fluctuation amplitude for every Fourier mode and the metadata with all the microscopy
conditions. The vesicles have different sizes so that they practically cover a good span of focal depth (∆) from 0.03 to
0.15. The meta data is included in the first sheet of the excel file. The second sheet has the mode and mean squared
amplitude (and error). The remaining sheets have the Fourier modes for every microscopy setting (and focal depth).
Note that our Fourier signal was normalized by vesicle radius. For the definition of our Fourier transform, please refer
to Gracia et al.[3]. The contour detection is conducted as given in the main text and supplement.

The rest of the folders as listed below contain vesicle images in tiff format (grouped in folders for the separate
vesicle as suggested by the folder name) and an excel sheet with the meta data indicating the specific microscopy
conditions (AU = Airy unit, NA = numerical aperture).

The folder “Raw images - different focal depth” contains confocal microscopy raw images at different focal depths
without any image processing for vesicles of different sizes.

The folder “Raw images - phase contrast vs confocal” contains phase contrast and confocal microscopy raw images
for the same vesicle without any image processing for vesicles of different sizes.

The folder “Raw images - polarization correction” contains polarized and polarization-corrected confocal microscopy
raw images for the same vesicle without any image processing.

https://dx.doi.org/10.17617/3.4p
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