Supporting Information

Synergistic effect in improving the electrical conductivity in polymer

nanocomposites by mixing spherical and rod fillers

Fan Qu^{1,2}, Wei Sun^{1,2}, Bin Li,³, Fanzhu Li^{1,2}, Yangyang Gao^{1,2*}, Xiuying Zhao^{1,2*}, Liqun Zhang^{1,}

2*

 ¹State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China
²Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China
³School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

^{*} Corresponding author: <u>gaoyy@mail.buct.edu.cn</u> or <u>zhaoxy@mail.buct.edu.cn</u> or <u>zhanglq</u> @mail.buct.edu.cn

Fig. S1 (a) RDF for systems with different ratio (α) where the filler volume fraction φ is their percolation threshold. (b) Snapshots of fillers with different α where the polymer chains are neglected for clarity. The red spheres denote the nanorods, while the blue spheres denote the nanospheres. ($T^* = 1.0, \dot{\gamma} = 0.0$)

Fig. S2 (a) The directional conductive probability Λ_{\parallel} parallel to the shear direction, (b) directional conductive probability Λ_{\perp} perpendicular to the shear direction as a function of the filler volume fraction φ for different ratio (α). ($T^*=1.0, \dot{\gamma}=0.1$)

Fig. S3 Change of the largest cluster size C_n as a function of the filler volume fraction φ for different ratio (α). ($T^* = 1.0, \dot{\gamma} = 0.1$)

Fig. S4 Change of the fitted parameters (a and b) as a function of the NS-NR tunneling distance

Fig. S5 Both the percolation values φ_c and the percolation range d_c at the shear rate $\dot{\gamma}$ =0.0 and 0.1 for different ratio (α). (T^* =1.0)