A spectroscopic and molecular dynamics study on the aggregation process of a long-acting lipidated therapeutic peptide: the case of Semaglutide.

M. Venanzi,* M. Savioli, R. Cimino, E. Gatto, A. Palleschi, G. Ripani, E. Placidi, D. Cicero, F.

Orvieto, E. Bianchi

Electronic Supplementary Information

Fig. S1 Fluorescence spectra of SMG. Black line: $\lambda_{ex}=280$ nm; red: $\lambda_{ex}=295$ nm. The spectra were normalized to unit at the maximum to emphasize shape similarity.

Fig. S2 Fluorescence emission spectra of SMG solutions (phosphate buffer, pH 8) normalized by the absorption at λ_{ex} =295 nm. Black line: 4 μ M; blue: 30 μ M; red: 20 μ M.

Fig S3. Fluorescence spectra of Pyrene (1 μ M) adding increasing aliquots (25 μ l) of 66 μ M SMG solution (phosphate buffer, pH 8, 25°C).

Fig. S4 Absorption spectra of SMG (phosphate buffer, pH 8, 25°C) at different times (days). The absorption bands were normalized to unit area for better comparison.

Fig. S5 Size distribution of the globular structures imaged by AFM upon deposition on mica of a freshly-prepared 30 μ M SMG aqueous solution (phosphate buffer, pH 8, T=25°C).

Fig. S6 Size distribution (length) of the rod structures imaged by AFM upon deposition on mica of an aged 30 μ M SMG aqueous solution (phosphate buffer, pH 8, T=25°C).

Fig. S7 Size distribution (width) of the rod structures imaged by AFM upon deposition on mica of an aged 30 μ M SMG aqueous solution (phosphate buffer, pH 8, T=25°C).

Table T1 Time decay parameters of SMG in water/glycerol 1:2 (v/v) solutions for different temperatures.

T(°C)	τ_1 (ns)	Q 1	τ_2 (ns)	Q .2	τ ₃ (ns)	0.3	<τ> (ns)
3.1	0.88	0.23	4.38	0.43	7.59	0.34	4.7
5.8	0.82	0.23	4.62	0.52	7.88	0.25	4.6
10.0	0.91	0.22	4.54	0.54	7.74	0.24	4.5
14.8	0.74	0.20	4.24	0.54	7.59	0.26	4.4
20.7	0.83	0.20	4.15	0.58	7.51	0.22	4.3
25.2	0.97	0.18	4.17	0.62	7.62	0.20	4.3
29.8	0.99	0.20	4.17	0.64	7.73	0.16	4.1
34.4	1.11	0.20	4.04	0.63	7.54	0.17	4.1

Table T2. Fluorescence time decays of SMG aged solutions (phosphate buffer, pH 8, T= $25^{\circ}C$

$\lambda_{ex}=298 \text{ nm}; \lambda_{em}$	= 350 nm							
Concentration (µM)	α_1	τ_1 (ns)	α2	τ_2 (ns)	α3	τ ₃ (ns)	<pre>(τ) (ns)</pre>	χ^2
4	0.89	1.2	0.05	3.7	0.06	9.9	1.9	1.04
20	0.74	0.7	0.24	3.3	0.02	13.6	1.7	1.09
30	0.80	1.4	0.14	5.6	0.06	13.8	2.7	1.12
$\lambda_{ex}=298 \text{ nm}; \lambda_{em}=$	= 420 nm						_	
Concentration (µM)	α_1	τ_1 (ns)	α_2	τ ₂ (ns)	<pre>(τ) (ns)</pre>	χ^2	_	
4	0.25	0.94	0.75	3.72	3.02	2.71	_	
20	0.35	0.89	0.65	3.85	2.82	2.77		
30	0.18	0.34	0.82	3.33	2.80	2.59	_	
$\lambda_{ex}=344 \text{ nm}; \lambda_{em}=1000 \text{ m}$	= 420 nm							
Concentration (µM)	α_1	τ_1 (ns)	α2	τ_2 (ns)	α3	τ_3 (ns)	<pre>(τ) (ns)</pre>	χ^2
4	0.35	1	0.2	3.1	0.45	6.2	3.8	1.06
20	0.54	0.2	0.17	1.7	0.29	5.5	2.0	1.12
30	0.44	1.2	0.47	4.7	0.09	10.5	3.8	1.12

λ	ex=298	nm;	λ_{em}	=	350	nr
---	--------	-----	----------------	---	-----	----

Fractal autocatalytic aggregation model (Pasternack et al. 1998):

$$\lambda(t) = \lambda_0 + \frac{(\lambda_0 - \lambda_i)}{\left\{1 + (m-1)\left[k_0 t + \frac{(k_c t)^{n+1}}{n+1}\right]\right\}^{\frac{1}{m-1}}}$$

Parameter		Value	Standard Error	
λ_i (nm)		409.1	0.2	
$\lambda_0 (nm)$		353.8	0.2	
m		2.1	0.6	
n		14	3	
$k_0 (d^{-1})$		1.5×10 ⁻	³ 4 ×10 ⁻⁴	
$k_{c} (d^{-1})$		4.72×10	0 ⁻² 4 ×10 ⁻⁴	
	$\chi^2 = 0.0673$		$R^2 = 0.9999$	