Supplementary Information Light-triggered Explosion of Lipid Vesicles

Vinit Kumar Malik,¹ Sangwoo Shin,² and Jie Feng^{1,*}

¹Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,USA ²Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

I. SUMMARY OF THE LITERATURES

TABLE S1 Summary of previous literatures and highlights of the present work on vesicle dynamics under light-induced osmotic shock.

Straining Method	Dynamics	D/S	1 Th/E ²	References
Light-induced membrane structure change	Pulsatile	D	$\mathrm{Th} + \mathrm{E}$	[1]
Light-induced membrane structure change	Pulsatile	D	Th	[2]
Light-induced membrane structure change	Pulsatile	D	Th + E	[3]
Light-induced osmotic imbalance	Exploding	-	Ε	[4]
Light-induced osmotic imbalance	Exploding	-	Е	[5]
Light-induced osmotic imbalance	Pulsatile Exploding	\mathbf{S}	Th	Present work

 1 D/S: Deterministic/Stochastic approach for pore formation

² Th: Theory, E: Experiments

^{*} Contact Information: jiefeng@illinois.edu

II. SAMPLING MEMBRANE LYTIC TENSION

Figure S1 Sampling of membrane lytic tension. The solid red line is CDF of rupture. First, draw a random number $u \in U[0, 1]$. Next, invert the CDF such that $\sigma_l = P_r(u)$.

Here we use a Inverse Transformation Method to draw samples from the probability distribution of σ_l to determine the lytic membrane tension for the current swell-burst-reseal cycle (Fig. S1). The steps of the algorithm are as follows [6]

a) obtain a cumulative probability distribution function (CDF) of membrane ruptutre, $P_r = 1 - S$. Here S is survival probability of membrane as formulated in Eq. 1 (main text). Note that S depends on the $\dot{\sigma}$, hence the distribution will change for each cycle.

b) draw a random number, $u \in U[0, 1]$ where U[0, 1] is a uniform distribution.

c) invert the CDF to determine the membrane lytic tension for the current cycle as $\sigma_l = P_r(u).$

III. MATERIAL PROPERTIES USED IN THE MODEL VALIDATION WITH THE EXPERIMENTAL DATA IN [7]

The material properties used in the simulations to plot Figs. 2 a-b,d (main text) are listed in Table S2. The fitting value of the prepore radius, $r_{\delta} = 0.41$ nm is within the typical range in the literatures [8, 9].

Parameter	Values	References
R_0	8, 14, 20 $\mu\mathrm{m}$	[7]
c_0	0.2 M	[7]
d	$3.5 \ \mathrm{nm}$	[7]
γ	8.6 pN	[10]
k_b	$7{\times}10^{-20}~{\rm J}$	[11]
K	$0.17 \mathrm{~N/m}$	[12]
$ u_s$	$18.04 \times 10^{-6} \text{ m}^3/\text{mol}$	[7]
η_s	0.001 Pa \cdot s	[7]
η_m	$5{\times}10^{-9}~{\rm N}\cdot{\rm s/m}$	[7]
Р	$20 \ \mu { m m/s}$	[7]
$D_{sucrose}$	$5 \ \times 10^{-10} \ {\rm m^2/s}$	[13]
r_{δ}	0.41 nm	Present work

TABLE S2 Material properties of POPC bilayers

- O. Sandre, L. Moreaux and F. Brochard-Wyart, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 10591–10596.
- [2] F. Brochard-Wyart, P. De Gennes and O. Sandre, *Physica A*, 2000, **278**, 32–51.
- [3] E. Karatekin, O. Sandre, H. Guitouni, N. Borghi, P.-H. Puech and F. Brochard-Wyart, Biophys. J., 2003, 84, 1734–1749.
- [4] T. F. Zhu and J. W. Szostak, J. Syst. Chem., 2011, 2, 4.
- [5] A. Peyret, E. Ibarboure, A. Tron, L. Beauté, R. Rust, O. Sandre, N. D. McClenaghan and S. Lecommandoux, Angew. Chem. Int. Ed., 2017, 56, 1566–1570.
- [6] J. E. Gentle, Random Number Generation and Monte Carlo Methods, Springer Science & Business Media, 2006.
- [7] M. Chabanon, J. C. Ho, B. Liedberg, A. N. Parikh and P. Rangamani, *Biophys. J.*, 2017, **112**, 1682–1691.

- [8] E. Evans, V. Heinrich, F. Ludwig and W. Rawicz, *Biophys. J.*, 2003, 85, 2342–2350.
- [9] E. Evans and B. A. Smith, New J. Phys., 2011, 13, 095010.
- [10] T. Portet and R. Dimova, *Biophys. J.*, 2010, **99**, 3264–3273.
- [11] W. Rawicz, K. Olbrich, T. McIntosh, D. Needham and E. Evans, *Biophys. J.*, 2000, 79, 328–339.
- [12] S. D. Shoemaker and T. K. Vanderlick, Ind. Eng. Chem. Res., 2002, 41, 324–329.
- [13] P. W. Linder, L. R. Nassimbeni, A. Polson and A. L. Rodgers, . Chem. Educ., 1976, 53, 330.