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1 Derivation of the shape equations

The energy functional that describes the membrane is given by:

W = B(H − C0σ̄)2 + λ+
kbT

ap
σ̄(log σ̄ − 1) (1)

To derive the energy minimizing shape, we define the Lagrangian functional L as:

L = r

[
λ+

kbT

ap
σ̄(log σ̄ − 1)

]
+ rB

[
1

2

(
sinφ

r
+ φ′

)
− C0σ̄

]2
+ Γ(r′ − cosφ) (2)

The equations that describe the membrane shape are derived from the minimization of a Lagrange functional L given by
Eq. 2 with respect to the functions r and φ. These functions are parametrized by the arc-length s. The Euler-Lagrange
equations for these functions read:

∂L
∂r
− d

ds

(
∂L
∂r′

)
= 0→ dΓ

ds
= λ+

kbT

ap
σ̄(log σ̄ − 1) +

M2

B
− M sinφ

r
(3)

∂L
∂φ
− d

ds

(
∂L
∂φ′

)
= 0→ dM

ds
=

Γ sinφ

r
(4)

We derive a Hamiltonian from the Lagrangian functional in Eq. 2. The total energy of the membrane depends on
its area, which is an implicit function of the arc-length s. This implies that the Lagrangian depends on the spatial
coordinate s implicitely as well. In order to specify the domain where the shape equations are to be solved, the protein
concentration σ̄ must be evaluated on the membrane area. This can be done as the relation A′ = 2πr provides a one-to-
one correspondence between the area A and the arc-length s. Moreover, as the size of the upper limit of the coordinate
s is not fixed the following relations are obtained:

∂L
∂s

= −dH
ds

= 0 (5)

H(smax) = 0→ H(s) = 0 (6)

The Hamiltonean is given by:

H = −L+ r′
∂L
∂r′

+ φ′
∂L
∂φ′

= 0 (7)

Explicitly:

H = r

[
−
(
λ+

kbT

ap
σ̄(log σ̄ − 1)

)
− M2

B
+

Γ cosφ

r
+ φ′M

]
= 0 (8)
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The expression inside the brackets in Eq. 8 vanishes and then we express the terms inside the parenthesis as function of
M2,Γ, r and φ. Inserting the resulting expression into Eq. 3 we obtain:

dΓ

ds
=

Γ cosφ

r
− 2M sinφ

r
+M

(
2M

B
+ 2C0σ̄

)
(9)

Next, we write Eq. 3 and Eq. 4 as a function of two new variables Q and T :

Q ≡ −Γ sinφ

r
(10)

T ≡ Γ cosφ

r
(11)

Using Eq. 9 these new variables fulfill the following differential equations:

dQ

ds
= −M sinφ

r

(
2M

B
− 2 sinφ

r
+ 2C0σ̄

)
− φ′T (12)

dT

ds
=
M cosφ

r

(
2M

B
− 2 sinφ

r
+ 2C0σ̄

)
+ φ′Q (13)

A solution to Eq. 12 and Eq. 13 is given by the following ansatz:

Q = −U sinφ (14)

T = U cosφ (15)

where U satisfies
dU

ds
=
M

r

(
2M

B
− 2 sinφ

r
+ 2C0σ̄

)
(16)

Finally, the equations that determine the shape of the membrane are given by the ones obtained of the geometry described
in Fig. 1 of the Main Text together with Eq. 4 and Eq. 16:

φ′ =
2M

B
− sinφ

r
+ 2C0σ̄ (17)

r′ = cosφ (18)

z′ = sinφ (19)

A′ = 2πr (20)

M ′ = U sinφ (21)

U ′ =
M

r

(
2M

B
− 2 sinφ

r
+ 2C0σ̄

)
(22)

We notice that the shape equations do not depend on the parameter kbT .

2 Boundary conditions

From the geometry used to describe the shape of the membrane, shown in Fig. 1 of the Main Text the following boundary
conditions can be extracted:

r(s = 0) = 0 (23)

φ(s = 0) = 0 (24)

A(s = 0) = 0 (25)

and we define the origin of the z coordinate to be located at s = 0:

z(s = 0) = 0 (26)
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However, given the form of the shape equations and its divergent behaviour at s = 0 these boundary conditions need to
be regularized by doing a Taylor expansion around s = 0. Then, we define the boundary condition at s = ε instead of
s = 0, where ε� 1:

r(ε) ≈ r(0) + εr′(0) = ε (27)

φ(ε) ≈ φ(0) + εφ′(0) ≡ εc1 (28)

A(ε) ≈ A(0) + εA′(0) +
ε2

2
A′′(0) = πε2 (29)

z(ε) ≈ z(0) + εz′(0) +
ε2

2
z′′(0) =

c1
2
ε2 (30)

M(ε) ≈ B(c1 − C0σ̄(ε)) (31)

where c1 is defined as the mean curvature at s = ε and results from solution of the ODEs. Additionally, we impose that
at the far boundary smax the membrane is nearly flat which implies:

φ(smax) = 0 (32)

To find a boundary condition for the function U , we use the expression for the Hamiltonean in Eq. 8. This equation
holds identically assuming that r(s = 0) = 0, and it holds for s = smax only if the term in brackets vanishes. The
equation 32 allow us to assume that the mean curvature and the bending moment M vanish at the far boundary. With
these assumptions, we can find a relation for U(smax):

U(smax) = λ+
kbT

ap
σ̄(log σ̄ − 1) ≈ λ (33)

where σ is evaluated at smax. As we are considering a large spacial domain, the protein concentration at the far boundary
satisfies σ̄(smax) ≈ 0, and then U(smax) can be written as in eq. 33. In this way, we have a system of 6 coupled ordinary
differential with the boundary conditions in Eq. 27-33 and the parameter c1.

3 Non-dimensional analysis

Assuming that the characteristic length of the system, L, is given by the typical vesicle size, we can non-dimensionalize
the shape equations and the evolution equation for the protein concentration σ as follows:

s̄ =
s

L
, r̄ =

r

L
, z̄ =

z

L
, M̄ =

ML

B
, C̄0 = C0L

Ū =
UL2

B
, Q̄ =

QL2

B
, λ̄ =

λL2

B
, σ̄ =

σ

σm

t̄ ≡ t

τD
=
tD

L2
, Λ̄ =

ΛB

L2D
=

B

kbT

ap
L2

Substituting the dimensional quantities in terms of the non-dimensional variables and then dropping all the bars, the
evolution equation can be written in dimensionless form as

σ̄t −
1

r
(r(σ′ + 2C̄0Λ̄σ̄Q̄))′ =

τD
τon

Θ(H −H0)− τD
τoff

σ̄ (34)

where τon and τoff define the time scales of recruitment and detachment, respectively, and are given by:

τon =
1

cpkon
, τoff =

1

koff

where cp is the typical protein concentration on the bulk surrounding the membrane and kon is the affinity between the
proteins and the membrane. Further, we define the ratio between the time scales as:

K1 ≡
τD
τon

K2 ≡
τD
τoff

where τD = L2

D is the typical diffusive time scale on a biological membrane. With these definitions we recover Eq. 15 of
the Main Text.
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3.1 Numerical implementation

To solve numerically the shape equations we used the solver bvp4c in Matlab and the evolution equation of the protein
concentration was solved using a finite difference discretization in time and space, where the spatial derivatives where
computed by a centered-difference scheme and the time derivative by a backward scheme. The steps to solve the coupled
equations are summarised as follows:

1. Give an initial protein concentration σ̄0, for example a Gaussian profile, with small amplitude.

2. Solve the associated shape equations using bvp4c in Matlab.

3. With the geometry given by the solution of the shape equations, solve the difusso-kinetic equation to obtain the
protein concentration at a later time step, namely, σ̄, using as initial density σ̄0.

4. Solve the shape equations with the new protein concentration σ̄.

5. Update the initial protein concentration, σ̄ → σ̄0

6. Iterate over the steps 3 to 5, until the formation of a bud neck with almost vanishing width is reached. In this case
the shape equations and the evolution equation for σ̄ becomes singular and the numerical solver cannot provide
a valid numerical solution. As explained in the main text, we will consider the evolution of the membrane shape
until the time tcut, at which the membrane neck has a small but finite width, equal to the membrane thickness.

4 Validity of the solutions given by the shape equations.

To show that the shapes obtained as a result of the integration of the shape equations, Eq. 17-22 do correspond to a
minimized energy we consider the case of zero surface tension, namely λ = 0 in the energy functional given by Eq. 1. In
this case, the bending moment M given in Eq. 21 should vanish, which implies that the mean curvature of the membrane
follows the spontaneous curvature imposed by the proteins. Hence, a simplified set of equations can be obtained by
setting M = 0. As a consequence, U = 0. These equations are:

φ′ = − sinφ

r
+ 2C0σ̄ (35)

r′ = cosφ (36)

z′ = sinφ (37)

A′ = 2πr (38)

with the following boundary conditions:

r(ε) = ε

φ(ε) = C0σ̄(A = 0)ε

A(ε) = πε2

z(ε) =
C0σ̄(A = 0)

2
ε2

In Fig. 1a we compare the shapes obtained at t = tcut by solving the full set of equations, Eq. 17-22 (set of equations 1),
and the simpler equations given by Eq. 35-38 (set of equations 2) for K1 = 2.25 and H0 = 0.015. The shapes obtained
are very similar, indicating that the assumption of vanishing bending moment, M = 0, when the surface tension vanishes
is correct. In addition, in Fig. 1b we show that by solving the set of equations 1, the bending moment is zero.
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(a) Comparison between the shapes obtained by
solving the set of equations 1 and 2.

(b) The bending moment M(s) obtained by solving
the set of equations 1.

Figure 1: Verification of the validity of the solutions given by the shape equations (set 1), for the particular case of vanishing
surface tension, λ = 0. The shape obtained agrees well with the solution given by the simplified equations (set 2). The bending
moment M(s) obtained as a solution of the shape equations vanishes, as shown in fig. 1b.

4.1 Effect of the initial protein density

In all the simulations, we have assumed that the initial protein density is given by a Gaussian profile, σ̄(s, t = 0) =

σ0e
−(s/0.3)2 , where σ0 measures the amplitude of the initial density. In all the results presented in the main text we have

chosen σ0 = 0.1. Given that the recruitment term depends on the mean curvature via a cutoff function, the membrane
should have initially a small but finite deformation to trigger the recruitment. Then it is expected that if the initial
protein density is too small, the membrane will not evolve into a budded shape. To see the effect of the parameter σ0
on the membrane shape dynamics, we chose K1 = 9 and H0 = 0.15 and varied the amplitude of the initial density. If
σ0 = 0.03, i.e, almost one order of magnitude smaller than the one we have considered, the membrane remains flat, as
shown in Fig. 2a. However, with an initial amplitude of σ0 > 0.03 the membrane evolves into a budded shape, similar to
the one obtained when σ0 = 0.1. In Fig. 2b we show the dependence between the time at which the neck width equals
the membrane thickness, tcut, and the amplitude of the initial protein density, σ0, where it is observed that the initial
amplitude σ0 has a small effect on tcut. Hence, the parameter σ0 plays a minor role in the budding dynamics.

(a) Shapes at t = tcut. (b) tcut as function of σ0.

Figure 2: (a) Comparison of the shapes obtained at t = tcut for K1 = 9 and H0 = 0.15, when σ0 = 0.1. The amplitude of
the initial protein density does not have a strong influence in the final membrane shape, provided σ0 > 0.03. If σ0 < 0.03 the
membrane shape does not evolve into a budded structure. (b) The scission time tcut as a function of the initial density amplitude,
σ0, showing that indeed tcut is only slightly modified by the parameter σ0. Then, this parameter does not play a key role in the
membrane budding dynamics.
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4.2 Regularising the Heaviside for the recruitment model

In the main text we have assumed that the protein recruitment depends on the membrane curvature via a cut-off or
Heaviside function that is piece-wise constant, giving a finite and constant on rates when the membrane mean curvature
exceeds a threshold H > H0, and vanishing rate when H < H0. Instead of a Heaviside function an hyperbolic tangent
function can be used, i.e, Θ(H−H0)→ 0.5(1 + tanh a(H −H0)), where a determines the steepness of the tanh function.
To mimic the Heaviside, a should be large enough, to ensure that if H < H0 the recruitment vanishes. The parameters
K1 and K2 have a clear physical interpretation, as on and off rates. Other models for protein recruitment could be
considered. For example, one could assume that the recruitment term is proportional to the mean curvature, ∼ βH,
where β is a constant of proportionality. Nevertheless, β might not have a straightforward physical interpretation, and
to address the general effect of changing the recruitment model is beyond the scope of this work. In Fig. 3a we show
the comparison between the shapes obtained for the Heaviside and tanh, for K1 = 2.25 and H0 = 0.015, corresponding
to t = tcut. We observe that the Heaviside and the tanh model give very similar shapes when a > 300 and the protein
profiles σ̄ as a function of the area A are nearly identical to the Heaviside solution (Fig. 3b). Only when the tanh function
becomes wide a < 300 the results start to deviate from the solution from the Heaviside as recruitment of proteins have
”leaked” over a larger area due to the width of the tanh-function.

(a) Shapes at t = tcut forK1 = 2.25 andH0 = 0.015. (b) σ̄(A) for the shapes in Fig. 3a.

Figure 3: (a) Shapes obtained with the Heaviside model and its regularized version ∼ 0.5(1 + tanh a(H −H0)) at t = tcut for
H0 = 0.015 and K1 = 2.25. The shapes are similar, provided that the tanh is steep enough. If a < 300 the shapes differ. (b)
The protein density σ̄ as a function of the area A, associated to the shapes in Fig. 3a. If the tanh function is not steep enough
(a < 300), the density σ̄ start to differ, as the recruitment term leaks to a larger membrane area as the tanh function becomes
wide.

5 Estimation of the interaction and gradient terms in the energy func-
tional

According to Eq. 1, we are considering an energy functional where interaction terms ∼ bσ̄2 and gradient terms ∼ b(∇σ̄)2

are absent, as we have assumed that the interaction between proteins b is weak. This choice a priori is arbitrary, as
in general these terms should be present. However, it is illustrative to estimate the relative importance of these terms
respect to the bending energy and the entropy. In order to do this, for simplicity we will assume that λ = 0. Following
the result of the previous section, if the surface tension vanishes the bending moment and hence the bending energy
vanishes for any given protein concentration profile (see Fig. 1b). We will assume that the protein concentration is one
of the solutions obtained from the numerical simulations at a given time step, for K1 = 2.25 and H0 = 0.015, shown in
Fig. 4a.

It has been estimated theoretically and experimentally that the interaction potential is of the order of 2kbT (1; 2),
which in practice is considerably smaller than the typical bending energy of the membrane. Then the interaction

potential should satisfy b � B. In Fig. 4b we plot the adimensional entropic term kbT
B

L2

ap
σ̄(log(σ) − 1), the interaction

term − b
B

L2

ap
σ̄2 and the gradient term b

B (∇σ̄)2 assuming that the ratio b
B = 1

10 . We can observe that in this case the

entropy dominates over the interaction and the gradient terms. Hence, it is reasonable to neglect these terms in the
energy functional.
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(a) A protein profile obtained from numerical simulations,
for K1 = 2.25 and H0 = 0.015.

(b) Comparison between the entropy and the interaction term
for the protein profile in fig. 4a

Figure 4: Estimation of the contributions to the energy arising from the entropy and interaction between proteins. Assuming
that the ratio b

B
= 1

20
, the interaction and gradient terms have a small contribution to the energy.

6 The effect of surface tension in the membrane shape evolution

The surface tension influences the budding time and the shape of the forming vesicle. In order to establish the effect of
the surface tension in the membrane dynamics we fix the parameters K1 and H0 and change the the parameter λ. As λ
increases, the numerical calculations become challenging and exploring the effect of the surface tension on the membrane
shape evolution is limited to very small values of λ. The dependence of zmax with respect to time is shown in Fig. 5a
for some values of λ. One of the effects of having surface tension in the system is that the variable zmax defined in the
main text ceases to have an oscillatory behaviour after a certain value of λ, which implies that the formation of pearl
structures is prevented in general. The budding time tbud is defined respect to the local minimum of zmax(t), which,
following the discussion presented in the main text, correspond to the formation of an Ω-shape. The budding time tbud
as a function of λ is shown in Fig. 5b, where it can be observed that the surface tension delays the formation of the bud,
as tbud increases if the surface tension becomes larger.

(a) zmax(t) for different values of λ. (b) tbud as a function of λ.

Figure 5: The effect of the membrane tension in its shape evolution. Fig. 5a shows the evolution in time of the height of the
budding structure zmax. This function does not exhibit oscillations in general, as in the case where λ = 0. Hence, the formation
of pearls is prevented in most cases. In Fig. 5b the budding time, tbud is plotted as function of the tension λ. The budding
time corresponds to the first local minimum of zmax. tbud increases as the surface tension becomes larger. This indicates that the
surface tension delays the budding process. In all simulations K1 = 2.25 and H0 = 0.015.

To further characterise the effect of surface tension on the membrane shape, we compare the shapes obtained when
λ = 0.04 and the ones corresponding to λ = 0, at given times. This comparison is shown in Fig. 6, where is shown that
at the scission time t = tcut corresponding to vanishing surface tension, λ = 0, H0 = 0.015 and K1 = 2.25, the membrane
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under the effect of surface tension exhibits quite different shapes. In general, the surface tension favors the formation of
budding structures with small height, as compared with the shapes when λ = 0.

(a) t = 0.2tcut = 0.05. (b) t = 0.5tcut = 0.13. (c) t = tcut = 0.25.

Figure 6: Comparison between the shapes obtained when the surface tension is zero, λ = 0 and λ = 0.04 at three different
snapshots in time defined respect to tcut discussed in the main text, when the dimensionless rate coefficient is K1 = 2.25 and the
threshold for protein recruitment is H0 = 0.015. As we march forward in time the membrane deforms from a nearly flat membrane
(not shown) into a pit-shape for both values of λ (a), but the shapes start to differ visibly at a later time ((b) and (c)) and at
t = tcut a pearl structure is already formed when λ = 0 but only a single bud is formed when λ = 0.04 (c). The color bar represents
the protein density σ̄(s, t). A finite but small value of λ has the overall effect of reducing the height of the budding structure and
preventing the formation of pearls. The scale bar is the dimensionless unit length of the system, equivalent to L = 50nm.
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