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I. SIMULATION MODEL

Our semiflexible filaments are modeled as discretized wormlike chains [1] with rigid, inextensible segments. We
adopt the algorithm for constrained Brownian dynamics of bead-rod wormlike chains with anisotropic friction by
Montesi et. al [2]. The details that follow are an overview of the algorithm introduced in their paper, with the
addition of interactions and self-propulsion forces.
Filaments are represented by N sites and N−1 segments, with fixed segment length a, contour length L = (N−1)a,

and anisotropic friction, ζ⊥ = 2ζ‖. The position of each site ri is updated using a midstep algorithm
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where ∆t is the time step, v
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i is the initial velocity of site i at initial position r
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i . Each site i is assigned an

orientation, corresponding to the orientation of the segment attaching it to site i+ 1,
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The orientation of the last site of the filament is set equal to that of its only neighboring segment, so that uN = uN−1.
The velocity of each site is

vi = Hij · Ftot
j , (3)

where Hij is an anisotropic mobility tensor, and is the mobility of site i in response to a force on site j. The total
force on site i is the sum

Ftot
i = Fbend

i + Fmetric
i + Ftension

i + Fext
i + ηi. (4)

The deterministic forces include filament bending forces, metric forces, tension forces, and external forces from interac-
tions. ηi are the random forces contributing to the Brownian motion of the filament, and are geometrically-projected
such that the forces due not break the constraints due to the fixed segment length, and are described in detail by
Montesi et al. [2].
The mobility tensor can be written as an inverse site friction tensor

Hij = δijζ
−1
j ,
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where ũi is a vector tangent to site i, the ⊗ symbol denotes the outer product, and the parallel and perpendicular
friction coefficients corresponding to site i are ζi‖ and ζi⊥ respectively. The tangent vector is the average of the

orientations ui of its neighboring segments,

ũi =
(ui + ui−1)

|ui + ui−1|
(6)
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for 2 ≤ i ≤ N , and ũ1 = u1, ũN = uN−1 at the chain ends. The position update routine in Eqn. 1 can be rewritten
in terms of the inverse site friction tensor as
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The diffusivity of the wormlike chain is D = kBT/ζ = kBT/Nζi, where ζi is the local friction due to site i, which
depends on the filament aspect ratio L/d where d is the diameter of the chain. In the regime of rigid, infinitely thin
rods, the coefficient of friction is given by [3],

lim
L/d→∞

ζ⊥ = 4πηsLǫ. (9)

where ηs is the fluid viscosity and ǫ = 1/ ln (L/d). In the finite aspect ratio case, this friction coefficient is multiplied
by a geometric factor

f(ǫ) =
1 + 0.64ǫ

1− 1.15ǫ
+ 1.659ǫ2. (10)

Therefore, each site experiences a local friction given by

ζ i⊥ = 4πηsaǫf(ǫ). (11)

The bending energy of a discrete wormlike chain for N ≫ 1 is approximated by

Ubend = −κ

a

N−1
∑

k=2

uk · uk−1, (12)

where κ is the bending rigidity, which is related to the persistence length Lp of the wormlike chain as κ/kBT = Lp.
Note that we are adopting the convention that the previous equation is true in all dimensions d of wormlike chains,
unlike the convention adopted by Landau and Lifshitz where κ/kBT = (d− 1)Lp/2 [4]. This results in a Kuhn length
that depends on dimensionality, b = (d− 1)Lp, which is critical when analyzing the correlations of the wormlike chain
for d = 2, as discussed later.
The bending force is Fbend

i = −∂Ubend/∂ri. The implementation of the bending forces coincides with metric forces,
which come from a metric pseudo-potential

Umetric =
kBT

2
ln (det Ĝ), (13)

and Ĝ is the metric tensor, which is an (N − 1) × (N − 1) tridiagonal matrix. Ĝ has diagonal terms di = 2 and
the off-diagonal terms depend on the cosine of the angle between neighboring segments, ci = −ui · ui−1. The metric
pseudo-potential is necessary for the filament conformation to have the expected statistical behavior in the flexible
limit, Lp ≪ L.
It was shown in the work of Pasquali et al. [5] that the bending forces and metric forces could be calculated together

as one force term,

Fbend
i + Fmetric

i =
1

a
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k
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, (14)

where κeff replaces the true bending rigidity κ as an effective rigidity with a conformational dependence,

κeff
i = κ+ kBTaĜ

−1
i−1,i. (15)

The derivative in Eqn. 14 can be evaluated from

∂uk

∂ri
=

1

a
(δi,k+1 − δi,k)(I− uk ⊗ uk), (16)
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so the two forces can be written

Fbend
i + Fmetric
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)

. (17)

For an inextensible wormlike chain, the positions of N sites must satisfy N − 1 constraints Cµ where

Cµ = |rµ+1 − rµ| = a, (18)

for µ = 1, . . . , N − 1. Differentiating the constraints with respect to the site positions ri yields a vector

niµ = uµ(δi,µ+1 − δi,µ). (19)

The geometrically projected random forces ηi must satisfy the property

ηi · niµ = 0, (20)

so that the 3N dimensional vector of random forces ηi is locally tangent to the 3N − (N − 1) = 2N + 1 dimensional
hypersurface to which the system is confined.
The geometrically projected random forces η are calculated from

ηi = η′
i − niµη̂µ,

= η′
i + η̂iui − η̂i−1ui−1,

(21)

where η′
i are the unprojected random forces and η̂µ is the component of the 3N dimensional unprojected random

force vector along direction niµ. The unprojected random forces at each timestep are
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(22)

where ξi is a spatial vector whose elements are uniformly distributed random numbers between −0.5, 0.5 [2, 6].
To calculate η̂i, we solve the set of N − 1 linear equations

N−1
∑

ν=1

Ĝµν η̂ν = (η′
µ+1 − η′

µ) · uµ = pµ, (23)

where Ĝ is the metric tensor. In matrix notation, this is equivalent to solving Ĝη̂ = p for η̂, and can be solved in
O(N) steps using LU decomposition for tridiagonal matrices. Once the system is solved for η̂i, we use Eqn. 21 to
solve for the geometrically projected random forces. While the deterministic forces are recalculated and applied at
each half step of the simulation, the geometrically projected random forces are only calculated once per full simulation

step at the initial site positions r
(0)
i , and applied at each half step of the algorithm.

To calculate the tension Ti, we require that the system constraints are constant, i.e. Ċµ = 0. This is equivalent to
solving the system of linear equations

N−1
∑

ν=1

ĤµνTν = uµ · (ζ−1
µ+1 · Fuc

µ+1 − ζ−1
µ · Fuc

µ ) = qµ, (24)

where µ = 1, . . . , N − 1. In matrix notation, this can be written as ĤT = q, where Ĥ is another tridiagonal
(N − 1)× (N − 1) matrix

Ĥµν =

N
∑
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i · niν (25)
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Ĥ =



















b1 a2 0 . . . 0 0
a2 b2 a3 0 . . . 0
0 a3 b3 a4 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 0 aN−3 bN−3 aN−2 0
0 . . . 0 aN−2 bN−2 aN−1

0 0 . . . 0 aN−1 bN−1



















, (26)

with diagonal and off-diagonal elements
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2 + (ũµ+1 · uµ)

2
)

,

aµ = − 1

ζ⊥
uµ+1 · uµ −

( 1

ζ‖
− 1

ζ⊥

)(
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and can be solved in a similar manner as Eqn. 23. The tension forces are then

Ftension
i = Tiui − Ti−1ui−1. (28)

External forces Fext
i include forces from filament-filament interactions and self-propulsion forces from the driving of

molecular motors. The filament-filament interaction forces are calculated from the derivative of the general exponential
model potential (GEM-8)

U(r) =

{

ǫe−(r/σ)8 if r <
√
2σ,

0 otherwise.
(29)

where r is the minimum distance between neighboring filament segments and σ is the unit length used in the simulation,
defined to be the diameter of a filament.
Forces from molecular motors are modeled in our simulations as a uniform force density fdr that is directed along

the local filament segment orientations,

Fdr = fdrui. (30)

The assumptions of this model are that lattice defects are negligible for observing collective behavior of gliding
filaments, and that motor binding and unbinding events occur at fast enough rates such that their behavior need
not be explicitly included in the model. These assumptions are guided by experimental observations that filament
velocities are constant in gliding assays, despite the presence of filament crossing events that certainly require a large
number of unbinding and binding events [7].

II. MODEL IMPLEMENTATION

Simulation software for the filament model is written in C++ and is publicly available online [8]. The simulations
were run on the Summit computing cluster [9] and parallelized using OpenMP. The simulations presented in this
work required approximately 106 CPU hours of computation, as a conservative estimate, plus additional resources for
post-processing and analysis.

III. MODEL VALIDATION

We tested the model to ensure agreement with theory for Brownian wormlike chains. Filament diffusion was
validated by measuring the mean-squared displacement (MSD) and vector correlation function (VCF) for filaments
in the rigid regime (Lp ≫ L) and matching the expected values for slender, rigid filaments [3] (Fig. 1).

Filament bending was validated by ensuring that the conformations sampled by a filament at thermal equilibrium
matched the expected statistical behavior. The distribution of angles between joining filament segments should be a
Boltzmann distribution P (cos θ) ∝ eLp/L cos θ. Following Montesi et al. [2], we fit a histogram of filament angles from
our simulation and found good agreement with the theoretical distribution (Fig. 2).
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FIG. 1. Left, simulation and theoretical comparison of the mean-squared displacement (MSD) averaged over 100 rigid filaments

(Lp/L = 1000). The expected value of the MSD for a rigid filament of length L and diameter σ is given by 〈
(

R(t)−R(0)
)2
〉 =

6Dtrt, where R is the center of mass of the filament and Dtr is the translational diffusion coefficient Dtr = ln(L/σ)
3πηL

kBT ,

where η is the fluid viscosity. Right, simulation and theoretical comparison of the vector correlation function (VCF) averaged
over 100 rigid filaments (Lp/L = 1000). The time axis is in simulation units τ , where τ is the average time for a sphere of
diameter σ to diffuse a distance σ. The expected value of the VCF for a rigid filament of length L and diameter σ is given by

〈
(

u(t)− u(0)
)2
〉 = 2

(

1− exp(−2Drt)
)

, where u is the orientation of the filament and Dr is the rotational diffusion coefficient

Dr = 3 ln(L/σ)

πηL3 kBT . The time axes are in simulation units τ , where τ is the average time for a sphere of diameter σ to diffuse

its own diameter.

We validated the mean-square end-to-end distance 〈R2〉 of the filaments in 2D. With our choice of κ = LpkBT for
d = 2, 〈R2〉 is given by the equation

〈R2〉 = 4LLp − 8L2
p(1− e

− L
2Lp ), (31)

which differs from the usual result of a Kratky-Porod wormlike chain by the replacement Lp → 2Lp [1]. We see an
apparent softening of the filament in the presence of activity, in agreement with recent reports of the same effect [10–
13]. We plot the apparent persistence length derived from the observed 〈R2〉 as a function of Péclet number in Fig. 3.
The softening is appreciable at lower rigidities and vanishes for increasingly rigid filaments.

We also validated the bending model by quantifying the filament buckling behavior for rigid filaments that were
placed under a load. For a rigid filament with a persistence length Lp, we expect the maximum load that an

unconstrained filament can withstand before buckling to be given by Euler’s critical load for a column, Fcr =
π2LpkBT

L2 .
To measure the critical load, we linearly increased a Hookean spring force between filament ends and recorded the
force at the time when the end-to-end distance of the filament sharply deviated from the filament contour length.
Varying both contour length and persistence length, we compared our measured values of the critical load to theory
and found good agreement with the expected values (Fig. 4).

IV. SIMULATION PARAMETERS

Key parameters of our simulation include the filament length L, diameter σ, persistence length Lp, driving force
per unit length fdr, repulsive energy ǫ, simulation box diameter Lsys, and filament packing fraction φ. In our
simulations, all filaments have an aspect ratio l = L/σ = 60, and the system size is lsys = Lsys/L = 20. In our
dimensionless reduced units, σ , kBT , and D are set to unity, where D is the diffusion coefficient of a sphere with
diameter σ. The driving force in reduced units is fdr = 3, 10, and 30, so that the corresponding Péclet numbers
are Pe = fdrL

2/kBT ≈ 104, 3.3 × 104, 105. When the repulsive energy ǫ in the GEM-8 potential has a value
ǫdr = 0.287σfdr, the repulsive interaction between particles induces a maximum force equal to the driving force. The
repulsion parameter is then rescaled to be ǫ̃ = ǫ/ǫdr so that ǫ̃ = l = 60 corresponds to fully impenetrable filaments in
the absence of any additional forces for any given Péclet number.
We chose the segment length a to be as small as possible so that our discrete filament model could best represent a

continuous filament. However, numerical errors in the algorithm used in our model scale proportionally to Lp/a [2].
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FIG. 2. Simulation and theoretical comparison of the distributions of angles between segments for filaments with Lp = 0, 1, 4,
and 8. Simulations were carried out by averaging the results for 100 non-interacting filaments of length L = 20σ and segment
length a = σ diffusing for 104τ .

Therefore, we must balance a small segment length with small numerical errors in the simulation. For the range of
persistence lengths explored in our simulations, a is typically 1–4σ. In order to reduce the propogation of numerical
errors, we periodically renormalized the filament site positions so the segment length remained in the range a±10−3a.
The stability of the simulations can be assessed by measuring the frequency at which the normalization occurs, and
we chose a cutoff frequency of 1/τ in our determination of the smallest permissible segment length used in our results.
The dimensionless parameters of interest when exploring the phase behavior of collective semiflexible filaments are

κ̃ = Lp/L, the rescaled energy ǫ̃ = ǫ/ǫdr, and packing fraction φ = Afil/Asys, where Asys is the area of the simulation
box and Afil = N(Lσ + πσ2) is the total area occupied by N spherocylindrical filaments. The timestep used in our
half step integration algorithm was ∆t = 10−4τ , where τ is the average time for a sphere of diameter σ to diffuse its
own diameter. The active timescale is the time required for a filament to traverse its own length τA = l/vdr = 1/ζ‖fdr,

which is 3τ , τ , 0.33τ for Pe = 104, 3.33× 104, 105 respectively.
Filaments in the simulation were initialized by randomly inserting filaments parallel to one axis of the simulation

box in a nematic arrangement, and allowing the filaments to diffuse for 100τ steps before driving the filaments.
Simulations terminated once they were determined to have reached a steady state, when order parameters appeared
to converge to constant values.

V. ORDER PARAMETERS

Six global order parameters quantify the system phase behavior, including polar order P , nematic order Q, average
contact number c, average local polar order p, average spiral number s, and number fluctuations ∆N . In addition, we
quantified the dynamical flocking behavior of the system by characterizing the fraction of flocking filaments NF /N as
well as the frequencies that filaments joined or left the flocking state, fNF–F and fF–NF respectively, which are both
normalized by the number of filaments in the initial state. All order parameters are time averaged over the final 10%
of the simulation.
The polar order P is the normalized magnitude of the total orientation vector of all filament segments,

P = |P| = 1

Nn

Nn
∑

i=1

ui, (32)

where ui is the orientation of the ith filament segment for N filaments each composed of n segments. The polar order
varies from 0, where filaments have fully isotropic directional arrangement, to 1, where all filaments are aligned in the
same direction.
The nematic order is the maximum eigenvalue Q of the 2D nematic order tensor

Q =
1

Nn

Nn
∑

i=1

(2ui ⊗ uj − I), (33)

where I is the unit tensor. The nematic order varies from 0, with fully isotropic directional arrangement, to 1 where
all filaments are parallel or antiparallel along the same axis.
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FIG. 3. Effective persistence length derived from 〈R2〉 for 2D wormlike chains as a function of Péclet number. The effective
persistence lengths are plotted relative to the persistence length at zero activity. High Péclet numbers result in an apparent
softening of the filament.

The contact number and local polar order parameters follow previous work measuring the collective behavior of
active polar particles [14]. The contact number is a measure of crowding in the system, and is calculated on a filament
segment-wise basis,

ci =

Nn
∑

j 6=i
inter

e−αs2ij , (34)

where sij is the minimum distance between segments i and j, and with the sum excluding all intrafilament segments.
The parameter α determines the effective cutoff for interparticle distances, which we choose to be 1/σ2 to only
consider the contributions from nearby particles to the sum. The contact number is a purely positive quantity,
ranging approximately from 0–10. The average contact number is the system average of the segment contact number.
The degree of local polar ordering is determined by measuring the polar order of each segment relative to their

nearest neighbors, and is weighted by the segment contact number,

pi =

∑Nn
j 6=i
inter

ui · uje
−αs2ij

ci
, (35)

where the sum again excludes intrafilament segments. The local polar order ranges from −1, where a segment is
surrounded by filaments of opposite polarity, to 1, where a segment is surrounded by neighboring segments with the
same polarity. The average local polar order is the system average of the local polar order of all filament segments.

The spiral number is a measure of filament spiraling, and is calculated by measuring the angle θi swept by traversing
the contour of filament i from tail to head originating from the center of curvature of the filament. The average spiral
number is the system average

s =
1

2π

N
∑

i

θi. (36)

A filament with segments that are on average oriented in a straight line will have s ≈ 0, since the center of curvature
is at a distance ∞ from the filament, and a filament bent into a perfect circle has s = 1. Since filaments are not bent
into perfect circles when they form a spiral, a filament spiral can be stable with a spiral number as low as si ≈ 0.8.
Filaments may also be wound very tightly and have a spiral number s > 1.
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FIG. 4. Simulation and theoretical comparison of the critical buckling load for filaments with varying length and persistence
length to ensure agreement with Euler’s formula for a buckling column. The critical load is given in simulation units, kBT/σ.

Number fluctuations ∆N are a measure of density fluctuations in the system. The number fluctuations are deter-
mined by drawing a box of size Lbox < Lsys and observing the number of filaments in the box at time t. By time
averaging the filament number within the box, one can arrive at a mean 〈N〉 and standard deviation ∆N , which is a
measure of the number fluctuations. By measuring ∆N and 〈N〉 for progressively larger box sizes, one can measure
the scaling of the number fluctuations relative to 〈N〉, ∆N ∝ 〈N〉α. For equilibrium systems with particles positioned
at random, the central limit theorem guarantees that α = 0.5. However, systems with collective behavior have been
shown to exhibit “giant number fluctuations” (GNF), with α > 0.5. Flocking systems that have long-range order in
2D, such as the Vicsek model at low temperature, have α = 0.8 [15–17]. We use the scaling of the number fluctuations
α as an order parameter to determine the long-range ordering of the system, and find values of α that range between
0.5–0.8 (Fig. 5).

We categorized the flocking behavior of filaments using the individual local order parameters pi and contact numbers
ci for filaments. Following previous work [14], we determine a filament to be flocking if pi ≥ 0.5. We also distinguish
between filaments at the flock interior and exterior by labeling flocking filaments with ci ≥ 0.5 as interior flocking
filaments and ci < 0.5 as exterior flocking filaments. We then tracked transitions between the three states, not flocking
(NF), interior flocking (IF), and exterior flocking (EF) in order to determine the switching rates.

Only the total fraction of flocking filaments and the ratio of switching frequencies between the not-flocking state and
flocking state were used as order parameters for clustering the simulation results. However, we found that saturation
of the number of flocking filaments (giant flock phase) occurs when a large number of filaments are in the IF state,
indicating that kinetic trapping of filaments plays an important role in stabilizing giant flocks, as observed in previous
work [14].

VI. HIGH-DIMENSIONAL CLUSTERING OF ORDER PARAMETERS

In order to label the simulation phases, simulation order parameters were grouped by Péclet number and packing
fraction φ and clustered using the k-means clustering algorithm as implemented by the scikit-learn Python package [18].
Initially, all order parameters values were standardized by (x − µ)/σ, where x is the order parameter value for a
simulation, and µ and σ are the mean and standard deviation of the same order parameter over all simulations with
the same Péclet number and packing fraction. The scaled order parameters were then processed using principal
component analysis, and all but the six largest components were discarded. These values were then clustered using
k-means clustering for different numbers of clusters k, until increasing the number of clusters no longer significantly
reduced the overall cost function of the algorithm. After simulations were assigned to clusters, the final simulation
state behaviors were observed and labeled.
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FIG. 5. Results for the number fluctuations exponent α, with number fluctuations ∆N ∝ 〈N〉α for parameters φ = 0.05,
Pe = 3.3× 104. The region of the phase diagram associated with the active isotropic phase has an exponent α ≈ 0.5, whereas
the regions with stable giant flocks have an exponent closer to 0.8, the theoretical value for flocking 2D systems with long-range
order.

VII. COLLECTIVE PHASE BEHAVIOR

Varying the parameters of filament stiffness κ̃ = Lp/L, repulsivity ǫ̃, packing fraction φ, and Péclet number, the high
dimensional clustering of order parameters generated five primary phases, including active isotropic, flocking, giant
flocking, swirling, and spooling. Table I lists the approximate region in phase space within the range of κ̃ = 5–100
and ǫ̃ = 0.5–10 where the different phases were observed.

TABLE I. Range of parameters κ̃ and ǫ̃ within the ranges of κ̃ = 5–100 and ǫ̃ = 0.5–10 that produced the various phase
behaviors observed in our simulations. Phases that were not observed for a certain Péclet number and filament density are
reported as values beyond these ranges.

φ = 0.05 φ = 0.1
Pe = 104 Pe = 3.3× 104 Pe = 105 Pe = 104 Pe = 3.3× 104 Pe = 105

Phase behavior κ̃ ǫ̃ κ̃ ǫ̃ κ̃ ǫ̃ κ̃ ǫ̃ κ̃ ǫ̃ κ̃ ǫ̃
Active isotropic 5–100 0.5–5 5–100 0.5–5 5–100 0.5–4 5–100 0.5–4 5–100 0.5–4 5–100 0.5–4
Flocking 5–100 5–10 5–100 4–10 5–100 3–10 20–100 4–7 5–100 3–7 5–100 3–10
Giant flocking 40–100 7–10 50–100 6–10 >10 >100 40–100 6–10 40–100 5–10 90–100 5–8
Swirling >100 >10 >100 >10 >100 >10 5–30 5–10 5–60 7–10 50–100 6–10
Spooling <5 >10 <5 >10 5–20 8–10 < 5 > 10 <5 >10 5–20 7–10
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FIG. 6. Contour plot of the probability for two randomly-oriented filaments to align upon collision (Palign) for different values
of repulsivity and stiffness. Results were determined by averaging over 10 simulations for 100 initial collision angles θc for each
data point. Each simulation is initialized with one filament fixed along the y-axis and the second filament oriented so that the
tip is pointed at the midpoint of the first filament, and the angle between filaments is θc = arccos(u0 · u1) and the minimum
distance between filaments is 2σ. Filaments were subject to random forces, and were driven with Pe = 10.

VIII. FILAMENT ALIGNMENT PROBABILITY

In order to determine the probability that two intersecting filaments align upon collision Palign, we simulated
10 intersections of two filaments for 100 initial collision angles evenly ranging between 0 and π in the presence of
Brownian noise. We repeated this process while varying κ̃ and ǫ̃ in order to determine the overall probability that
two randomly-oriented filaments would align upon collision for a given filament stiffness and repulsivity (Fig. 6).

IX. FILAMENT DIRECTIONAL PERSISTENCE

The filament orientation autocorrelation was calculated using

C(t) =
1

T

∫ T

0

u(t′) · u(t′ + t)dt′, (37)

where u(t) is the orientation of the filament at time t, and the correlation was averaged over N intervals of duration
T + t (Fig. 7). The filament orientation is determined by averaging over the orientation of filament segments.

Filament orientation autocorrelation lifetimes lengthen with increasing filament rigidity κ̃. For a fixed repulsion
ǫ̃, a longer orientation autocorrelation lifetime correlates with collective motion, which suggests that the angular
persistence of filament trajectories contributes to the formation of persistent flocks and bands. For more ballistic
trajectories, filaments that align can remain aligned for longer time, thus increasing the probability of aligning with
more filaments along that trajectory, which may cause the accumulation of aligned filaments to form persistent flocks.
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FIG. 7. Time autocorrelation of the filament orientation u calculated from simulations of non-interacting filaments with polar
driving force. The decorrelation time increases with increasing filament stiffness κ̃, indicating flexible filaments have less
directional persistence than stiff filaments. Values are averaged over filament number and time, and error bars correspond to
the standard error of the mean. The filaments are subject to random forces, and thus results from simulations at lower Péclet
numbers have larger variance. Simulations were run for 103τ .

X. HIGH DENSITY SIMULATIONS

Simulations were run at φ = 0.2 and 0.4, for κ̃ = 20, 50, and 100, and for values of ǫ̃ ranging from 1.5–10 in order
to explore the parameter space at higher filament densities and search for density-dependent phase behavior. We find
that the giant flock phase becomes more stable at a larger range of values of ǫ̃ with increasing density (Fig. 8). At
φ = 0.4, we found that multiple polar bands can coexist in the giant flocking phase, resulting in nematic laning, and
is stable over a wide range of repulsivity. We also ran one simulation at φ = 0.8 at ǫ̃ = 10 and κ̃ = 100, and find the
giant flock/nematic laning phase to be stable at higher values of ǫ̃ (Fig. 9).

We labeled the results by comparing the high density order parameter values to the results from simulations at
lower filament densities. The only major inconsistency in the order parameter values between the labeled phases
for low and high densities is the global polar order parameter P , which is high in the giant flock phase at densities
φ ≤ 0.2, and is closer to zero at higher densities due to the presence of nematic laning bands. However, we classify
nematic laning as a type of giant flocking phase, since the underlying dynamical behavior is similar.

XI. INTRINSIC CURVATURE

An intrinsic curvature was added to the filament model by modifying the bending potential in Eqn. 12 to have an
offset angle φ0,

Ubend = −κ

a

N−1
∑

k=2

cos (θk,k−1 − φ0), (38)

where θk,k−1 = arccos (uk · uk−1) is the angle between site orientations k and k − 1, and φ0 = adφ/ds corresponds
to the expected angle between two segments of length a with a curvature per unit length dφ/ds.

It can be shown that the term in the sum of Eqn. 38 can be rewritten as

cos (θk,k−1 − φ0) = Ruk ·R−1uk−1, (39)

where R is a rotation matrix that rotates the orientation vector uk by an angle φ0/2,

R =

(

cos(φ0/2) − sin(φ0/2)
sin(φ0/2) cos(φ0/2)

)

, (40)
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and its inverse R−1 rotates the orientation vector uk−1 by an angle −φ0/2. The combined bending and metric forces
from Eqn. 14 with intrinsic curvature are therefore

Fbend
i + Fmetric

i =
1

a

N−1
∑

k=2

κeff
k

∂(Ruk ·R−1uk−1)

∂ri
, (41)

which can be expanded in the same way as Eqn. 17.
We ran a simulation with intrinsic curvature dφ/ds = 0.02 radians/σ, with packing fraction φ = 0.3, filament length

l = 37, system box length lsys = 6.67l, rigidity κ̃ = 100, and repulsion ǫ̃ = 5 (Fig. 17). The filaments coalesce into
a single polar band, which then buckles and reassembles at an angle rotated in the direction of filament curvature.
This buckling and rotation behavior continues for the length of the simulation. The rotation of the polar order vector
has been observed in filament gliding assay experiments and simulations of bead-spring filament models with intrinsic
curvature [19].
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FIG. 8. Phase diagrams for simulations at higher filament densities with Péclet number Pe = 105. Filament packing fractions
are φ = 0.2 (left), and φ = 0.4 (right).



14

FIG. 9. Simulation with nematic laning bands for parameters φ = 0.8, κ̃ = 100, ǫ̃ = 10, Pe = 105.
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FIG. 10. Movie of simulation with filaments in the active isotropic phase with parameters φ = 0.2, κ̃ = 20, ǫ̃ = 1.5, Pe = 105.
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FIG. 11. Movie of simulation with filaments in the flocking phase with parameters φ = 0.2, κ̃ = 100, ǫ̃ = 2, Pe = 105.
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FIG. 12. Movie of simulation with filaments in the polar band phase with parameters φ = 0.2, κ̃ = 100, ǫ̃ = 3, Pe = 105.
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FIG. 13. Movie of simulation with filaments in the nematic band phase with parameters φ = 0.4, κ̃ = 100, ǫ̃ = 5, Pe = 105.
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FIG. 14. Movie of simulation with filaments in the giant flock phase with parameters φ = 0.04, κ̃ = 100, ǫ̃ = 5, Pe = 105.
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FIG. 15. Movie of simulation with filaments in the spooling phase with parameters φ = 0.1, κ̃ = 20, ǫ̃ = 10, Pe = 105.
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FIG. 16. Movie of simulation with filaments in the swirling phase with parameters φ = 0.2, κ̃ = 100, ǫ̃ = 10, Pe = 105.
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FIG. 17. Movie of simulation with intrinsic curvature 0.02 rad/σ and parameters φ = 0.3, κ̃ = 100, ǫ̃ = 5, Pe = 105.


