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Movies
Supplementary Movie 1
Manufacturing process of morphing fabrics structures.
Two heat-sealable sheets are superimposed and fixed in the working area of a CNC-machine. A
heating head (soldering iron) is mounted on the machine and directly plots the desired welding
pattern (video accelerated x80). The boundaries are then cut with scissors and a connector is
inserted at the inlet of the structure. The structure is connected to a pressure supply (e.g. an
inflating bulb) and buckles upon inflation into a 3D shape prescribed by the welding pattern.

Supplementary Movie 2
Anti-cone and saddle-shaped shells.
An archimedean spiral pattern (and thus nearly azimuthal welding direction) induces the radial
contraction of the structure upon inflation, which buckles into an anti-cone. The structure has
a diameter of 15 cm and is made of two superimposed Nylon fabric sheets (70den, one-sided
TPU-coated, 170 g/sqm) from Extremtextil. Varying the relative welding width ξ in a nearly
azimuthal channel pattern controls the local radial contraction rate λ, and a saddle of con-
stant negative Gaussian Curvature may be programmed. The structure has a diameter of 25 cm
and is made of two superimposed Ripstop-Nylon fabric sheets (40 den, one-sided TPU-coated,
70 g/m2) from Extremtextil.

Supplementary Movie 3
Three different strategies to program a helicoid.
Three strategies may be used to distort the planar metric: changing only the orientation of the
channels, playing additionally with the relative width of the seam lines, and making zigzag
patterns of varying angle. Three helicoids are programmed using each method. The structures
have a width of approximately 15 cm and are made of two superimposed Ripstop-Nylon fabric
sheets (40 den, one-sided TPU-coated, 70 g/m2) from Extremtextil.

Supplementary Movie 4
Influence of the zigzag angle χ on the principal contractions.
The variation of the angle χ of the zigzags induces a change in the ratio between the contraction
along (λ‖) and perpendicular (λ⊥) to the averaged zigzag direction.

Supplementary Movie 5
Dome programmed with a zigzag pattern.
A dome of constant positive curvature can be programmed by varying the angle of zigzags
(whose average direction is radial). The structure has a diameter of approx. 25 cm and is made
of two superimposed Ripstop-Nylon fabric sheets (40 den, one-sided TPU-coated, 70 g/m2)
from Extremtextil.
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Supplementary Movie 6
Gaussian shape programmed with a zigzag pattern.
The structure has a diameter of approx. 25 cm and is made of two superimposed Ripstop-Nylon
fabric sheets (40 den, one-sided TPU-coated, 70 g/m2) from Extremtextil.

Supplementary Movie 7
Inflation of a 4 m wide structure, programmed to shape into a paraboloid.
The structure is made of two superimposed Nylon fabric sheets (70 den, one-sided TPU-coated,
170 g/m2) from Extremtextil. The welding pattern has been made using an ultrasonic sewing
machine.

Supplementary Movie 8
Three layers structure.
Stacking three layers of fabric with specific welding patterns between the top-middle and middle-
bottom layers enables to get two different shapes from one structure (when the top-middle pat-
tern is inflated and when the middle-bottom one is inflated). Here, we reproduce the different
shapes of the cap of algae Acetabularia Acetabulum during its growth [1].

Supplementary Movie 9
Hydrogel actuated structure
Two layers of standard cotton fabric can be simply sewed together along a specific pattern and
small hydrogel beads (“water beads”) can be inserted in the structure, which remains mostly
flat. When immersed in water, the beads swell and deploy the structure into its target shape.
The structure has a diameter of approx. 18 cm. Total duration of the movie is one hour.

Structure fabrication
The fabrication of Gaussian morphing fabrics is relatively simple, since the manufacturing pro-
cess is completely 2D.

Material Any thermoplastic material may be potentially used, including among others Mylar,
polypropylene, polyethylene. Nevertheless, nylon textiles coated with thermoplastic urethane
(TPU) matrix are best suited. They present the advantage to be easily and strongly sealed at rel-
atively low temperature (around 150 ◦C). At such temperatures, only the TPU matrix melts and
not the nylon textile, thus avoiding undesired puncture of the sheet while welding. Such fabrics
are also stiff in the direction of nylon fibers (average Young’s modulus of typically 1 GPa) while
allowing some shear. This slight shear prevents the apparition of kinks and localized folds in
the structure.
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The structure is primarily made of two superimposed thermoplastic sheets that should be
sealed together along a specific pattern. Various simple techniques may be used to weld the two
sheets.

Heat printing A soldering iron may be mounted on an XY-plotter or a CNC-machine to di-
rectly ”print” the heat-sealed seams pattern on the two superimposed sheets (Fig. 2a in the main
document). We used the XY-plotter from Makeblock and a CNC Workbee from Openbuilds.
The temperature, pressure and displacement velocity of the heating head are tuned in order to
obtain a strong bonding between the two layers. These technical settings are however sensitive
to the thickness and material properties of the sheets. The rationale behind the choice of param-
eters is the following: the temperature should be high enough to melt the TPU, the displacement
velocity should be slow enough to ensure heat diffusion through the thickness of the sheet and
the load applied on the tip should be high enough to impose a strong bonding (but too much
loading may damage the sheets). In order to control the load at the tip, a slide is mounted on
the Z axis of the plotter, the soldering iron being attached to the slide. Additional weights may
be implemented to the slide to adjust the load. For the TPU-impregnated fabrics used in the
illustrated examples, we set a typical speed of 150 mm/min, a total weight of approximately
500 g and a head temperature at 220 ◦C. The diameter of the head is around 1 mm.

If the sheet is coated on both sides with thermoplastic material, a sheet of baking paper is
placed on top of the structure during the welding in order to protect the structure and to avoid
the adhesion of the melted material on the printing head.

Heat press Alternatively, the pattern of air channels may be laser cut in baking paper so that
the designed seam lines are cut out from the baking paper sheet. The resulting pattern is then
placed between both thermoplastic fabric sheets; the whole sandwich is heat-pressed between
two additional baking paper sheets to prevent the adhesion of melted thermoplastic on the heat
press. The two fabric sheets are sealed together only where the baking paper has been cut out.
The patterned baking paper remains trapped in the structure but does not play any mechanical
role upon inflation.

Heat press mould This method is best suited for serial production of the same structure. A
metallic plate is engraved except at the target location of the seam lines. It serves as a waffle iron
in the heat press, welding only the appropriate lines on the surface. This fabrication technique
could be directly used for industrial applications, enabling a large and cost-efficient throughput.

Other methods Alternatively, regular sewing is also possible to manufacture the structures,
if a sealant film is applied on the seam lines to ensure air tightness. Any impermeable fabric
may thus be used with such a fabrication strategy. Pressure within the structure may be caused
by other means, including hydrogel beads swelling in water. In such a case, the fabric sheets
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have to be permeable to allow water diffusion in the structure, promoting the shape change
(Supplementary movie 9).

Metric distortion strategies

1 Width of the seam
In the first presented version of these Gaussian morphing structures, inflated shapes only result
from the local direction of the seam lines. An additional degree of freedom in the distortion
of the flat metrics widens the possibilities of shape programming. A simple solution is to play
with the relative seam width ξ to tune the homogenized in-plane contraction perpendicular to
the seam direction (see Eq. 1 in the main manuscript).

Hemisphere. Consider purely radial airways, that induce azimuthal contraction. We define as
u the curvilinear coordinate in the inflated structure and r the radial coordinate of the initially
flat state. In the case of radial seams, there is no contraction in the radial direction (u = r). In
order to program a portion of a sphere of radius R, the evolution of the azimuthal contraction
λθ should follow:

λθ(r) =
R

r
sin

r

R
= 1− r2

6R2
+ o((r/R)2) (1)

The relative seam width ξ(r), may be easily computed by combining this relation with Eq. 1
from the main manuscript. The maximum achievable contraction is 2/π, which enables us to
program a hemisphere out of a flat disk (the equator indeed verifies r/R = π/2). The structure
does buckle, when inflated, into a bowl shape that is close to the targeted hemisphere (Fig. 3f
in the main manuscript). Nevertheless, the structure remains very floppy, as it may be easily
folded along any radial seam.

Saddle. In order to program a saddle of constant negative Gaussian curvature K, the perime-
ters should bear excess length: P (u) = 2πu(1 −Ku2/6 + o(u2)). In the ideal case of purely
azimuthal seams, perimeters remain unchanged upon activation, but the radii contract. At sec-
ond order in r, the contraction should thus reads:

λr(r) = 1 +
Kr2

6
(2)

Although the weld lines are not perfectly azimuthal (spiral pattern), the obtained shape is satis-
factory (Fig. 3g in the main manuscript) and appears to be stiff because of the curved seams.

Helicoid. Consider parallel seams of varying width. The contraction should be maximal at the
center line of the ribbon and can be chosen as π/2 with no contraction along the edges.Thus,
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the maximum admissible ratio l/p, where l is the width of the ribbon and p the pitch of the
helicoid, reads:

l

p
=

1

2

√
λ−2max − 1

4π2
(3)

where λmax corresponds to the maximum contraction, i.e. the minimal value of λ (λmax is
bounded by 2/π in the limit of vanishing thickness of the seam line). The variation of the
targeted contraction rate λ⊥ as a function of the coordinate along the seam x‖ (the origin being
chosen at the center of the ribbon) can be expressed as:

λ⊥(x‖) = λmax
√

1 + 4πx2‖/p
2 (4)

Using equation (1) from the main article, the relative width of the seam ξ reads:

ξ(x‖) = (
√

1 + 4πx2‖/p
2 − 1)/(λ−1max − 1) (5)

Additionally, two parallel stripes are sealed along the outer edges of the ribbon to ensure bend-
ing stiffness along the helicoid direction (Fig. 3h in the main manuscript).

The dome obtained with this strategy is very floppy, whereas the helicoid and the saddle
are relatively stiff. Both structures indeed present a boundary that is not contracted along its
tangent: the contraction is perpendicular to the boundary, which is stiffened by the presence
of the curved air beam. This is possible only for negative curvatures, since the plate may only
contract (and not extend) within a fixed boundary length. Another condition to obtain a stiff
structure is to ensure that the welded portions are under tension. As they are very slender, they
would indeed buckle for minute compressive forces.

2 Programming axisymmetric shapes with zigzag patterns
Using zigzag patterns (see main manuscript), simple geometric surfaces with Gaussian curva-
ture may be programmed. Consider a target axisymmetric shape obtained by the revolution of
the curve z = f(ρ), where (ρ, z) correspond to the cylindrical coordinates. We consider zigzag
patterns in the radial direction. In this case, the remaining degree of freedom is the internal zig-
zag angle χ(r), where r is the radial coordinate in the initially flat disk. Starting at the center
of the disk (r = 0), the inflated structure should be locally flat to avoid a singular point, which
imposes λ⊥ = λ‖ and thus χ(r = 0) = 1/

√
1 + λ. Making an infinitesimal step dr on the flat

disk thus results in an infinitesimal step:

du = λ‖(r)dr (6)

on the inflated curved surface. At this location, the needed azimuthal contraction simply reads:

λ⊥ = ρ/r (7)
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from which we retrieve the appropriate local angle χ(r). The infinitesimal step for ρ is set by
the geometric relation:

du =
√

dρ2 + dz2 =
√

1 + f ′(ρ)2 dρ (8)

Putting the last three equations together and using the constant area contraction λ⊥λ‖ = λ, we
retrieve the following expression:

λrdr =
√

1 + f ′(ρ)2 ρdρ (9)

The local angle χ(r) of radial zigzags follows the same evolution as the seam line orientation
angle α(r) in spiral patterns [2].
Depending on the configurations, Eq. 9 may be solved analytically or numerically. A paraboloid
is shown in Fig. 3j and Fig. 4 from the main manuscript. The shape of the inflated shell quantita-
tively matches the target profile (in red dashed lines). A Gaussian profile is presented in Fig. 3k
from the main manuscript. This target shape is in practice not reachable with the strategy im-
plying the variation of the width of the welded line. The curvature of the profile indeed induces
compressive azimuthal forces, which would result in the buckling of the welded portions.

Structural Stiffness
In this section, we describe the stretching and bending stiffness and maximum admissible mo-
ment of straight inflated textile beams and arrays of zigzag beams, in order to better understand
the mechanics of the structures we build.

1 Stiffness of straight lines
Consider a pair of facing strips of thickness t sealed along their edges of length l and width
w, with t � w � l. The width of an assembly of N parallel inflated strips is thus L0 =
2Nw/π . We define as w∗ = w − e, the width of the unsealed portion of the fabric (in practice
e � w). Upon inflation, the structure deforms into an air beam of circular cross section with
radius r = w/π if the pressure is large when compared with the bending resistance of the
strips, i.e. if p � Et3/w∗3, where E is the Young modulus of the fabric, which is the case in
our experiments. We also assume that the stretching strain induced by pressure is small, i.e.
p� Et/w, which is also verified experimentally.

Stretching. Along the beams, the stretching modulus of the inflated structure Y‖ simply reads
Y‖ = πEt (the potential contribution from pressure scales as pw which is order of magni-
tudes smaller than stretching the sheet). Conversely, stretching the structure in the direction
perpendicular to the seams means elongating the cross-section towards a solution that does not
maximize the volume. Laplace law imposes the cross sections of the beams to remain portions
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Figure 1: Stretching of the structure perpendicular to the direction of the seam. (a) Schematic
cross section of an inflated beam at rest and under traction, with the spanned angle β, the
effective strain at the scale of the sheet ε, the net displacement ∆ and a zoom on the force
balance at the seam. (b) Force-displacement curve for various pressures, with experimental
measurements in solid lines, and theoretical prediction in dashed lines. Inset: rescaled force-
displacement curve in the quasi-inextensible regime: the force does not depend on the properties
of the sheet. The structure corresponds to 10 tubes with w = 5.5 mm, e = 1.7 mm, E =
4.5.108 Pa, and t = 0.1 mm.

of circles of spanned angle β and corresponding radius of curvature R = w∗(1+ε)/β (Fig. 1a),
where ε is the (uniform) strain applied to the structure. The tension T in the sheet reads:

T = Etε = pw∗(1 + ε)/β (10)

A simple force balance (Fig. 1a) gives the following expression for the force F (per unit length):

F = 2T cos(β/2) (11)

The corresponding total displacement ∆ reads:

∆ = L− L0 = 2w∗
(

(1 + ε)
sin(β/2)

β
− 1

π

)
(12)

Combining equations (10-12), one may eliminate T and ε, and express both the force and the
displacement as a function of β

F = 2pw∗
cos(β/2)

β − Σ
(13)

∆ = 2w∗
(

sin(β/2)

β − Σ
− 1

π − Σ

)
(14)
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where Σ = pw∗/(Et) is a small dimensionless number as discussed above. These expres-
sions are plotted in Fig. 1b (dashed lines) and match precisely the force-displacement curves
measured experimentally (solid lines) for various pressures. The seam-line width e, difficult to
measure, has been used as a fitting parameter and yields reasonable values (1.7 mm), close to
the estimated measurements.
Linearization of the ratio FL0/(l∆) around the unloaded inflated state (β = π) provides an
analytical expression for the stretching modulus perpendicular to the seam direction Y⊥ for
infinitesimal deformation.

Y⊥ =
2

π
pw∗ (15)

For small deformations, the effective stretching modulus does not depend on the fabric and is
only set by the pressure and the geometry of the air beams. Dividing the force by the pressure
results in a collapse of the force vs. strain curves (Fig. 1b inset). Conversely, the stiffness of the
structures reaches the stiffness 2Et of the pair of sheets for large deformations, as illustrated in
Fig. 1b.

Bending. For small bending deformations, pressure does not play any role, since bending
conserves volume at the first order bending strain [3]. The bending stiffness B⊥ per unit width
of the beam thus corresponds to the bending stiffness of the envelope in the inflated geometry,
and reads (we here consider w∗ ' w):

B⊥ = Ew2t/(4π) (16)

In order to probe this prediction experimentally, slender air beams are subjected to a three-points
bending test for various pressures, as shown in Fig. 2(a) and (b). The applied force first displays
a linear dependence with the imposed displacement ∆z (Fig. 2c), as predicted by classical
Euler-Bernoulli beam theory:

∆z =
FL3

48EI
(17)

We obtain a fair agreement between the inferred stiffness and its theoretical value Ew2t/4π
(Fig. 2d).

Although this linear response is mostly independent of pressure, such an air beam dra-
matically collapses upon a critical load Fc that strongly depends on pressure, as shown in
Fig. 2c. While the profile of the beam follows the classical Euler-Bernoulli description, a sharp
king is observed when the force reaches Fc (Fig. 2b). The critical moment per unit width
Mc = πFcL/8w is plotted as a function of the pressure for various air beams in Fig. 2e made
of different materials and with cross-sections of various widths. The dependence of Mc on p
appears to be affine, where the slope varies with the width of the cross-section, while the critical
moment at vanishing pressure mainly depends only on the properies of the sheet (Fig. 2e).
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Figure 2: Three-point bending test of a straight inflated beam. (a) Experimental setup. (b) Pic-
tures for various imposed deflections with the superimposed theoretical profile in red dashed
lines. The four pictures, labeled by a, b, c, d, correspond to different stages of a bending test,
the force-displacement curves being shown in (c) for an air beam of deflated width w = 9 mm
made of a polypropylene sheet of thickness t = 50µm and Young’s modulus E = 2.2 GPa.
(d) Experimental bending stiffness per unit width B as a function of the theoretical bending
stiffness of air beams. Experimental (e) and theoretical (f) critical moments per unit width Mc

as a function of pressure accounting for ovalization (dashed lines) or not (solid lines).

Following Calladine [4] and Seide and Weingarten [5], the critical torque Mc for which an air
beam collapses is attained when the extreme fibre reaches the critical buckling stress σc in the
case of uniaxial compression of a cylindrical shell. The critical stress reads σc = πEt/(

√
3w).

In order to reach this critical compressive stress, the imposed moment must additionally over-
come the pressure-induced longitudinal tension in the beam, which classically reads σp =
pw/2πt. Hence the maximum bending moment per unit width that the air beam may sustain
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reads:

Mc = πw t
2
[σc + σp] (18)

Mc =
π2Et2

2
√

3
+
pw2

4π
(19)

The ovalization of the cross section upon curvature, known as Brazier effect, may be disregarded
in these examples, since the applied pressure limits changes of the shape of the cross-section.
The theoretical critical momentum with (dashed lines) and without (solid lines) the ovalization
of the cross section as a function of the pressure is shown in Fig. 2f. The comparison with
experimental data is fairly good.

In a structure constituted by an assembly of straight beams, the bending stiffness B‖ along the
seams is very weak as it mainly involves bending of the seams, while the inflated region only
rotates around these hinges. The bending stiffness of the seams scales classically as Et3 which
is orders of magnitude smaller than the stiffness in the transverse direction (Ew2t with w � t).
This strong stiffness anisotropy should be avoided to preserve the overall stability and stiffness
of the object. Soft structural modes may indeed cause the failure of the structure. Note that this
soft mode is possible because the sealed lines are rectilinear, providing the rotation axis. Hence,
some variations are needed in the direction of the network of heat-sealed lines, such that a stiff
mode will be encountered for any direction and position of bending solicitation.

2 ”Zigzag” Patterns
Stretching. As a force balance approach is not trivial in the case of the stretching of zigzag
patterns (Fig. 3a), we propose an energy approach to estimate the stretching rigidity. We restrain
ourselves to the “inextensible” regime, for which the total potential energy reads U = −pV −
F∆.
Using the same notations as in the previous section, the expression of the volume of a zigzag
structure is:

V =

(
1− sin β

β

)
w2nl

β
(20)

where n is the number of zigzag segments and l is the length of a single segment. The contrac-
tion rate perpendicular to the local seams λ may also be expressed as a function of the spanned
angle β (defined in Fig. 1):

λ = 2 sin (β/2)/β (21)

The displacement ∆ along (or perpendicular to) the zigzag direction reads:

∆ = (λ‖ − λ0‖)L0 (22)
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Figure 3: Stretching stiffness of a Zigzag pattern. (a) Sketch of the heat-sealed pattern and of
the traction test. (b) Theoretical (dashed line) and experimental (solid lines) force divided by
the pressure as a function of the elongation. The seam width of the line e, difficult to measure,
has been used as a fitting parameter (w = 7.2 mm, n = 33, l = 34 mm, χ = π/4).

where λ‖ =
λ√

sin2 χ+ λ2 cos2 χ
, λ0‖ is the contraction in the unstretched fully inflated state,

that is, for β = π, and L0 the length of the inflated structure in the rest state. Energy minimiza-
tion gives us the following expression for the force:

F = −p ∂V/∂β
∂∆/∂β

(23)

which becomes, after derivation:

F = 2p(w − e)2nl cos (β/2)
(tan2 χ+ sinc2(β/2))3/2

β tanχ
(24)

The ratio of the experimental force by the applied pressure F/p is plotted as a function of the
elongation L/L0 for various values of the pressure (Fig. 3b). All curves collapse onto one single
master curve (at least for small displacements), that is very well fitted by the inextensible theory
presented in equation (24), using once again the seam thickness e as a single fitting parameter.

Note that as in the case of miura-ori structures [6], inflated zigzag patterns exhibit an auxetic
behaviour: the Poisson ratio is negative around the inflated unstretched state (β = π) and reads:

ν = − λ2

tan2 χ
(25)

This expression is only valid in the inextensible regime, i.e., when χ is sufficiently large.
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