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Dependence of non-affinity on the reference coordinates

We calculate the non-affine deformation with respect to the time averaged position at 0% strain (Fig. S1(a))
r0. Alternatively, the non-affinity can be calculated with respect to the initial positions of the nodes (located
on a regular triangular lattice) rinit (Fig. S1(b)). The difference between Fig. S1(a) and Fig. S1(b) indicates
that temperature has an effect on the equilibrium node positions at 0% strain. This is in contrast with
athermal networks and bending stabilized networks, where the equilibrium node positions are equal to the
initial position of the nodes. Fig. S1(c) shows that the average displacement of the nodes from their initial
position to their equilibrium position dr = 〈|r0 − rinit|〉 depends on both temperature and connectivity.
Especially below the isostatic point there are significant reorganizations within the network. However, at
high temperatures also the network structure well above the isostatic point is affected. Clearly, the thermal
fluctuations do affect the equilibrium structure at 0% strain.

Size of the thermal fluctuations

To quantify the size of the thermal fluctuations, we monitor the root mean squared displacement of the
nodes with respect to their equilibrium position

√
〈u2

therm〉 and define the size of the fluctuations as drfluc =√
〈u2

therm〉 with · representing a time-average. From Fig. S2(a) it is clear that the size of the fluctuations

of the nodes depends on both temperature and connectivity. In general the size of the fluctuations decreases
with an increase in connectivity, indicating there is feedback between the number of constraints imposed

on a node in the network and how far the nodes can move. Before measuring

√
〈u2

therm〉, all systems are

subjected to the same calibration run of 100τ (see Fig. S2(b)/(c)). We note that for p = 0.65 (Fig. S2(b)) the

required time to reach a stable value of

√
〈u2

therm〉 is longer for lower temperatures, indicating that the rate

of equilibration depends on temperature. Furthermore, we see that at the higher connectivity value p = 0.90
(Fig. 2(c)) the fluctuations are smaller and reach their equilibrium value faster.

Relation between time-averaged non-affinity and instantaneous non-affinity

In an athermal elastic network the position of the crosslinks is determined by the applied deformation and the
non-affine response of the nodes. In a thermal elastic network, the positions of the nodes are also influenced
by thermal fluctuations of the nodes. The position of a node r under uniaxial extension ε can therefore be
described as

r(ε, T, p) = r0 + uaff(ε) + unaff(ε, T, p) + utherm(ε, T, p) , (1)

where p is the network connectivity parameter, and T temperature. u stands for a displacement vector and
r0 is the time averaged position at 0% strain. If a system is fixed at a certain strain ε the average position
of the particle over time will be,

r = r0 + uaff(ε) + unaff(ε, T, p) , (2)

assuming |utherm| = 0. If we instead monitor the average size of the fluctuations of the nodes we find that

(r− r)
2

= u2
therm(ε, T, p) . (3)

Note that in case of drift in the system center of mass, this needs to be taken into account. In our case, we
assume < r >= rcom. Below, we will detail how these contributions are related to the measure for non-affinity
Γ.
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Non-affine response of time averaged positions

We will start with the non-affinity based on time-averaged positions (Eq. 2), as this parameter is directly
related to the non-affinity parameter discussed for athermal systems that describes the size of non-affine
rearrangements of the network.

Γmech =
〈(r–raff)2〉

ε2`20
=
〈(unaff)2〉
ε2`20

. (4)

To simplify the equation our definition for r is used (Eq. 2) and the definition raff = r0 + uaff.

Non-affine response of instantaneous positions

In a system with thermal fluctuations, the instantaneous positions of the node will also be determined by (non-
affine) thermal fluctuations (See Eq. 1). While monitoring the non-affinity during a continuous deformation,
the non-affinity parameter Γ will therefore include both the effects of non-affine rearrangements and thermal
fluctuations.

Γ =
〈(r–raff)2〉

ε2`20
=
〈(unaff + utherm)2〉

ε2`20
. (5)

The relation between Γ and Γmech

An essential difference with respect to athermal networks is that Γ is a result of both non-affine structural
rearrangements and thermal fluctuations. Here we show the relation between Γmech and Γ. We can rewrite
the non-affinity such that we only have sums over all particles on the right hand side.

[Γ− Γmech]Nε2`20 =
∑

((unaff + utherm)2)–
∑

((unaff)2) =
∑

(u2
therm + 2unaff · utherm) . (6)

Returning to the averages over all particles we can now distinguish a term related to thermal fluctuations
and a cross-term related to both the non-affine deformation and the thermal fluctuations,

Γ = Γmech +
〈u2

therm〉
ε2`20

+
2〈unaff · utherm〉

ε2`20
. (7)

Hence, the contributions of structural rearrangements and thermal fluctuations to Γ can not be decoupled.

The influence of driving and viscosity

The mechanical and failure response can depend on both the driving speed and the friction coefficient of the
nodes, i.e., viscosity of the implicit solvent. In Fig. S7 we show how these parameters affect the stress-strain
curves around the isostatic point (Fig. S7(a-b)) and far above the isostatic point (Fig. S7(d-e)). An increase
in either ε̇ or ζ has a similar effect as both parameters affect the relaxation time of stress in the system.
Furthermore the friction coefficient controls the amount of damping in the system, from the underdamped
regime at low ζ, where inertia plays a role, to the overdamped (Brownian) regime at high ζ, where the effect
of inertia is negligible. In general, an increase in these parameters leads to an increase in ductility. Below
the isostatic point, both the pre-peak and post-peak behaviour are affected, while above the isostatic point
it is mostly the post peak response. Furthermore, we show the peak stress σp as a function of the strain rate
for p = 0.65 and p = 0.90 for a range of ζ and two values of T ∗: 1 · 10−9 (purple) and 1 · 10−5 (blue). We
see that typically the peak stress increases with the strain rate. At a higher strain rate, there is less time for
stress relaxation, leading to a more affine response and a higher stress in the system. Similarly, we observe
that the peak stress increases with an increase in the friction coefficient, which is also related to the time for
stress relaxation τrelax = ζ/µ. In the main text, we set the strain-rate ε̇ = 0.001 and the friction coefficient
ζ = 10. We can observe that for p = 0.65 we are in a regime where the effect of ε̇ and ζ on the peak stress is
relatively small. At p = 0.90 the effect of the strain rate is bigger, however we do not expect that this affects
our conclusions.
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Estimate of Etherm/Ebreak in experimental systems

We introduce the ratio between the thermal energy (Etherm = kBT ) and the failure energy of a building block
(Ebreak) as a measure for the (network level) temperature sensitivity of the failure response of a network
material. We can use the expression T ∗/( 1

2λ
2) to get a rough estimate of Etherm/Ebreak for an experimental

system when we know µ and λ of the individual building blocks. Please note, that this approximation assumes
a linear stress-strain response of the building blocks (Ebreak = 1

2µ(λ`0)2).

Stiff fibre networks: Collagen

Collagen is a stiff athermal fibre network. The spring constant of a stiff fiber can be defined as µ = EyA/`c =
Eyπr

2/`c with Ey the Youngs Modulus of the fibre, A the cross-section of the fibre, `c the distance between
crosslinks, and r the radius of a a fibre. Here we neglect the fiber bending stiffness, which is expected to have
only a minor influence on network fracture [1]. Consequently, T ∗ of a fibre network can be calculated as

T ∗ =
kBT

Eyπr2`c
. (8)

For a collagen network with Ey = 50 MPa, r = 30 nm and assuming that `c scales with the mesh size of the
network `c ≈ ξ = 2 µm (Based on Ref. [2]) we find that T ∗ = 1.5 · 10−8 at T = 298 K, which falls well into
the athermal limit. For a value of λ = 0.15 [1] we find that T ∗/( 1

2λ
2) = 1.3 · 10−6 which also falls well into

the athermal limit.

Semiflexible polymer networks: Actin

Actin is regarded as a typical example of a semiflexibe polymer. For a semiflexible polymer, the spring
constant is µ = 90κ`p/`

4 (by linear approximation) [3], with ` the contour length of the polymer and `p its
persistence length. Using that `p = κ/kBT and ` ≈ `c we find that µ = 90kBT`

2
p/`

4
c , with κ the bending

stiffness, `p the persistence length, and `c the distance between crosslinks. Thus the reduced temperature of
a semiflexible polymer, like actin, is

T ∗ =
`2c

90`2p
. (9)

Furthermore, if we assume that a semiflexible polymer breaks once its thermal fluctuations are pulled out,
we can calculate the extensibility as the ratio between contour length and the average end-to-end distance
without tension. With ∆` = `2/(6`p) the average contraction of a semiflexible polymer with respect to its
contour length without tension [3], λ = `/(` −∆`) − 1 = ∆`/(l −∆`). Assuming that ` ≈ `c and ∆` � `c
we can use the simplified expression λ ≈ `c/(6`p).

For an actin network with fibers with a persistence length of 17 µm [3] and a distance between crosslinks
`c of roughly 300 nm [4] T ∗ = 3.5 · 10−6 which indicates that the effect of temperature at the network level is
negligible ( note that at the level of the building blocks temperature does play an important role). For these
parameters we find that λ = 0.03 and that T ∗/( 1

2λ
2) = 8 · 10−3, which is in the cross-over regime where the

failure response is temperature sensitive.

Flexible polymer networks: Freely jointed chain

Flexible polymers are an example of extremely soft network building blocks. In the case of flexible polymers
the elastic response of the building blocks can be described based on the freely jointed chain. By linear
approximation the spring constant of a freely jointed chain can be written as µ = 3kBT/(Nb

2) with N the
number of segments and b the segment length. Thus we find that

T ∗ =
kBT

µ`2c
=
Nb2

3`2c
=

1

3
, (10)

when we use the average end-to-end distance of the chain as an estimate for the distance between crosslinks
lc =

√
Nb. Furthermore, if we assume that the extensibility of the chain scales as the ratio between the

contour length of the polymer Nb and the average end-to-end distance lc, we find λ =
√
N − 1 ≈

√
N .

Thus, T ∗/( 1
2λ

2) ≈ 2/(3N). For a polymer network with N = 100 this results in the estimates T ∗ = 0.33
and T ∗/( 1

2λ
2) = 7 · 10−3 i.e. the network level mechanical and failure response are both placed well in the
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temperature sensitive regime. However, it should be noted that the strong non-linear response of polymer
chains might significantly affect this estimate, especially in the failure regime.
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Fig. S1: Non-affine response in the linear regime versus p for a range of T ∗ (colors are indicated in the
legend). (a) The time-averaged (over 1900τ) non-affine response at 1.5% strain with respect to the time-
averaged position of the nodes at 0% strain r0. (b) The time-averaged non-affine response at 1.5% strain with
respect to the coordinates rinit of the initial configuration (a regular triangular lattice). (c) The ensemble
averaged displacement dr = 〈|r0 − rinit|〉 at 0% strain. Every data point is based on simulations of at least
10 independent configurations.

Fig. S2: The size of the thermal fluctuations of the node positions. (a) the time-averaged (over 1900 τ)

root mean squared fluctuation size drfluc =

√
〈u2

therm〉 versus p for a range of T ∗ (colors are indicated in

the legend). (b-c) The development of
√
〈u2

therm〉 as a function of time (2000 τ in total). The black line is

placed at 100 τ , time-averages for Γmech and
√
〈u2

therm〉 are based on data past this line. (b) p = 0.65 and
(c) p = 0.90. Every data point is based on simulations of at least 10 independent configurations.
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Fig. S3: Main results based on the virial stress including the kinetic component. (a) stress-strain curve for
a system with L = 128; p = 0.65 for a range of reduced temperatures T ∗ indicated in the legend. Curves are
averages over 10 configurations. (b) linear modulus as a function of the dilution factor (p) for a range of T ∗

(see legend). (c) Peak stress σp as a function of the reduced temperature for a range of p (see legend). (d)
Maximum stress drop ∆σmax and peak stress σp for a networks with p = 0.80 as a function of system size L
for a range of T ∗ (see legend).

Fig. S4: The time averaged (over 1900 τ) hydrostatic stress at 0% strain as a function of the p for a range of
reduced temperatures T ∗ (see legend). Every data point is based on simulations of at least 10 independent
configurations.
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Fig. S5: Main results based on the deviatoric stress σ = σyy−σhydr. (a) stress-strain curve for a system with
L = 128; p = 0.65 for a range of reduced temperatures T ∗ indicated in the legend. Curves are averages over
10 configurations. (b) linear modulus as a function of the dilution factor (p) for a range of T ∗ (see legend).
(c) Peak stress σp as a function of the reduced temperature for a range of p (see legend). (d) Maximum stress
drop ∆σmax and peak stress σp for a networks with p = 0.80 as a function of system size L for a range of T ∗

(see legend).

Fig. S6: Fit parameters of the scaling of σp with L using the powerlaw σp = (L/α)−β + σ∞p . σ∞p is reported
in the main text. (a) α versus T ∗. System parameters are indicated in the legend. (b) β versus T ∗ for the
same systems. Error bars represent the standard error in the fit of α and β, respectively.
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Fig. S7: The influence of driving and friction coefficient on the stress-strain response. (a) Stress versus
strain for a network around the isostatic point (p = 0.65, L = 1024, ζ = 10, T ∗ = 1 · 10−5) for a range of
strain rates (see legend). (b) Stress versus strain for a subisostatic network (p = 0.65, L = 1024, ε̇ = 0.001,
T ∗ = 1 · 10−5) for a range of ζ (see legend). (c) σp versus ε̇ for a networks with p = 0.65 and L = 1024. σp is
determined for T ∗ = 1 ·10−9 (purple) and T ∗ = 1 ·10−5 (blue) the shape of the markers indicates the friction
coefficient ζ (see legend). Stress versus strain for a network far above the isostatic point (p = 0.90, L = 1024,
ζ = 10, T ∗ = 1 · 10−5) for a range of strain rates (see legend). (e) Stress versus strain for a network far above
the isostatic point (p = 0.90, L = 1024, ε̇ = 0.001, T ∗ = 1 · 10−5) for a range of ζ (see legend). (f) σp versus
ε̇ for networks with p = 0.90 and L = 1024. Same color code as in (c).
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Fig. S8: Effect of bond breaking time τbreak, i.e. the time interval between moments when bonds are allowed
to rupture, on the stress-strain response. Stress-strain response for a system with p = 0.65 and L = 128 for a
temperature of (a) T ∗ = 1 · 10−8, (b) T ∗ = 1 · 10−5 and (c) T ∗ = 5 · 10−5. Stress-strain response for a system
with p = 0.90 and L = 128 for a temperature of (d) T ∗ = 1 · 10−8, (e) T ∗ = 1 · 10−5 and (f) T ∗ = 5 · 10−5.
The curves are averaged over 30 configurations.

Fig. S9: Main results based on the virial stress σyy for simulations with τbreak = 0.001 τ . Every data point
is based on simulations of 10 independent configurations. (a) Peak stress σp as a function of the reduced
temperature for a range of p (see legend). (b) Connectivity dependence of σp normalized by the peak stress in
the athermal limit σp,ath for several reduced temperatures (see legend). (c) Fraction of broken bonds at the
peak strain φp (including the peak event) as a function of T ∗ for a range of dilution factors p = 0.50− 0.90
(see legend). Fractions are calculated with respect to the initial number of bonds in the diluted network.
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