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I. COMPUTER SIMULATIONS AND SUPPORTING RESULTS

A. DMean concentration profiles of networks and penetrants

a BER=0.1 b Ben=0.5 (] Ben=1.0
&~ 15 Benp=0.1 { & ) i & —
0 15—55:2:0.7 0 15 -\ 0 15
S 1ol heste Y | 2o =
=} _ =} =
% 5Lhhs % s % s
s np=1- / S ) \ S

0t 0t 0t

80 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220

80 100 120 140 160 180 200 220

z[a] z[o] z[d]
d 10-2 in surface bulk | e 10_; in surface bulk | f 10-2 in surface bulk
& o 107 7N 1 & / \
'IE' 1073 bambothamastonmes 9 AR E) -IE- 107 <::> .IE. 107 A"""""/A
S S 10_4WM & 10_4”‘*!’%7'/ “ﬁl M
107 10 L
80 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220

z[a] z[o] z[d]

FIG. S1. Upper panels: network monomer concentration ¢,(z) in a good ((a) Benn = 0.1), intermediate ((c) Benn = 0.5), and
poor solvent ((c) fenn = 1.0) with different network—penetrant interactions Sen,. Lower panels: penetrant concentration cp(z)
in (d) the good, (e) intermediate, and (f) poor solvent with different network—penetrant interactions Be,p,. Three regions (in,

“s

surface, and bulk) are depicted in each plot by different colors, where we sampled the partitioning in the region “in”.

We show in Fig. [S1] the mean concentration profiles of the polymer network monomers and the penetrants in the

longitudinal direction z. The upper panels depict the network monomer concentrations ¢, (z) in corresponding

good

(Benn = 0.1), intermediate (Ben, = 0.5), and poor solvent (Ben, = 1.0) regimes, for different network—penetrant

attractions fBe,p. The lower panels depict the penetrant concentrations c,(z) in a similar manner. We show
regions (in, surface, and bulk) by different colors in each plot, where we sampled the partitioning in the region

three

“inﬂ .

After examining the overall plateau of the concentration profiles, we decided that the “in” region can be defined by
the longitudinal distance of around 10 ¢ = 4 nm, centered at the center-of-mass position of the membrane monomers.

The “surface” regions are determined by the longitudinal distance of 250 = 10 nm, next to the “in” region.
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B. Cross-linker radial distribution functions

We show in Fig. |S2| the two-dimensional radial distribution function g2, (r) between cross-linkers (xlink) in the
network for different values of ¢, and e,,. The pair correlation functions were computed by averaging within thin
membrane slabs (of thickness 1o) in the z and y directions, and finally averaged over all slabs. The number of the

membrane slabs ranges from 18 to 38, depending on the whole membrane width (see Fig. [S1).
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FIG. S2. Two-dimensional radial distribution functions gxiink(r) between the cross-linkers for different values of ¢, and enp.

C. Virial coefficients for partitioning

In Table [S1| we show the virial coefficients By* and B;"" obtained from fitting the partitioning K(¢,) in Fig. 3a in
the main text by the virial expression eqn (2) in the main text.
We show in Table [S1|the fitted second virial coefficients By in comparison with B}’ for the LJ interaction:

By (enp) = / dr2mr?[1 — exp(—BULY (r; €np))], (S1)
0
where we use the length parameter oy, = onp = 0.

In a similar manner we show the fitted third virial coefficients B3® in comparison with B for the one-component
LJ interaction:

B%J(E) = —% A /V d3r12d3r13[1 — exp(—ﬁULJ(rlg, 6))][1 — exp(—ﬁULJ(rlg, 6))“1 — eXp(—ﬂULJ(’I’Q;),, 6))], (82)

where V is the total volume.

D. Partitioning and mean penetrant number inside the network for large attractions
In Figs. and b, the partitioning log;, K is shown vs. €,y and ¢, for various interaction strengths, ranging

from low e,p, = 0.1 kT to high e,, = 2 kgT'. For large network—penetrant attraction and dense packing, simulation

TABLE S1. Virial coefficients B;” and B3 in eqn (2) obtained as fitting parameters in Fig. 3a are shown for different values
of enp. The exact values of BY? and B}’ for LJ potential are shown for comparison.

Benp 0.1 0.7 1.0 1.1 1.2 1.5

By /o? 0.634+0.08 —2.25+0.17 —4.8240.19 —5.61+0.16 —6.524+0.21 —9.26+0.34
B} /o® 0.97 —2.77 —5.32 —6.27 —-7.29 —10.75
By™ /o 3854035 4.74+044 685+045 T7.46+0.38 8314+0.48 10.41+0.74
By /o 1.25 2.46 1.89 0.55 —-1.92 —22.07
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FIG. S3. Partitioning log;, K as a function of (a) €xn and (b) ¢n, up to a high attraction of e,p = 2 kgT'. (c) Mean penetrant
number ni, per unit volume inside the network as a function of the polymer volume fraction ¢,. (d) Mean penetrant number
no per unit volume outside the network, as a function of the polymer volume fraction ¢y.

results become noisy. This is due to strong confinement effects, which result in nonequilibrium metastable states. In
Fig. we show the mean penetrant number nj, per unit volume v = V (enn, €np)/1000 inside the network, which is
also maximized with respect to ¢,. The mean penetrant number ny per v outside the network, on the other hand,
shown in Fig. [S3{, is minimized with respect to ¢,.

E. Lateral length of simulation box L, and L, in equilibrium

In Table we show values of the lateral length of the simulation box L, (=L,) for several chosen interaction
parameters €,, and €,,. We computed L, from the production run data, and the presented values are the mean as
well as the standard deviation in the parentheses.

TABLE S2. Lateral length of the simulation box L, (= L) in units of o for different interaction parameters en, and €np. The
presented values are mean with standard deviation in the parentheses, which are computed from the production run data.

Bemn| 4 0.5 1.0
Bfnp
0.1 52.18(0.06) 41.98(0.10) 27.08(0.17)
1.1 49.32(0.09) 33.49(0.24) 23.21(0.28)
1.5 41.40(0.19) 25.45(0.19) 19.96(0.14)

F. Calculations of diffusivity inside the network

To calculate the penetrant diffusivity in the membrane, D;,, we generated 20 simulation set ups with 3D periodic
boundary conditions of the polydisperse tetra-functional networks including the penetrants for each parameter set
of €nn and eyp, as shown in Fig. To determine the cubic box size and the number of the penetrants in the cell,
we used the equilibrium values of the penetrant density and the polymer density obtained from the main simulation
data from the anisotropic setups. We carried out the simulations typically for 10* time steps. We computed the
mean-squared-displacement (MSD) of the penetrants in the networks, averaged over time and particles, [I] as shown
in Fig. [S5| (upper panels), within the dimensionless simulation time range from ¢ = 100 to ¢ = 1000 to obtain diffusivity

via MSD = 6Djyt, ensuring the normal diffusion, [I] which fulfills o = dlgll\ffD =1 in Fig. [S5| (lower panels).




FIG. S4. Simulation snapshot of the polydisperse tetra-functional network with penetrants (blue) used to calculate the penetrant
diffusivity Din.
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FIG. S5. Upper panels: Mean-squared-displacement (MSD(¢)) of the penetrants in the networks. Lower panels: « is the local
slope of the MSD, defined as the numerical derivative dIn MSD/d In ¢.

G. Membrane isotropy in the central region

There occur finite size effects on the network conformation, particularly involved with attractive penetrants, which
eventually causes the global anisotropy of the network. The desired network region suitable for sampling the diffusivity
Dy, is the central region, where the network concentration profile reaches a plateau in the z direction, corresponding
to the “in” region shown in Fig.

To check the anisotropy of the “in” region, we calculated the shape descriptor 2 for three different quantities. In
general, there are three representative limiting cases of the order parameter x2; 3D isotropic (k2 = 0), anisotropic on
a plane (k% = 0.25), and anisotropic on a line (k% = 1), as depicted by the dashed lines in Fig. .

We first calculated the relative shape anisotropy & of the network monomer and cross-linker positions in the

2
shape

central “in” region, for several chosen parameters. The relative shape anisotropy /{fhape is defined as [2]
o 3 NANEN 1 (S3)
shape ™ 9 (X2 + AZ4A2)2 27

where A, Ay, and A, are the principal moments of the gyration tensor of positions of N, network particles, defined
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FIG. S6. (a) The relative shape anisotropy of the network nfhape as a function of the interaction parameters en, for different
enp- The dashed lines depict three representative limiting cases; 3D isotropic (k% = 0), on a plane (k* = 0.25), and on a line
(k% = 1). (b) The bond orientation anisotropy of the network x4, as a function of the interaction parameters ey, for different
énp- (¢) The local orientation anisotropy of the network K2 ontacts @8 & function of the interaction parameters ey, for different
€np. All results are averaged over independent simulation runs with the error bars smaller than the symbol size.
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cross-liker positions in a cubic box of the volume = 10% 02 centered at each “in” region, and averaged over time in
equilibrium. Figure shows that the relative shape of the network in the central region is very isotropic over all
chosen nine representative parameter values.

In addition, we employed two more methods to confirm the local isotropy in the entire “in” region of the simulated
polymer membranes. The second method is based on the same calculation given in eqn , but evaluates the bond
anisotropy k2. using the gyration tensor of bond orientations, defined as

where 4,j € {z,y, 2}, k) and #V are the particle positions. We sampled x of the network monomer and the

1 Nbonds bz(k) bgk)
Nionas

Sij = (S5)

= e

We sampled the bond vectors b of all network bonds Nyonas in the entire “in” region and averaged over time.

The third method defines the local orientation anisotropy k2., .cis- 1t is based on the same calculation given in
eqn and eqn , but the relative positions #*) — 7 were normalized to obtain the relative orientations. The
relative orientation of two polymer beads k and [ was sampled for all possible combinations (bonded and non-bonded)
within a cut-off of 2.5 ¢ and only in the entire “in” region. Note that this approach is similar to the evaluation of
the fabric tensor in granular materials science, [3] where normalized contact vectors are computed. We have checked
that the change of the cut-off distance did not significantly change the result.

The results for the representative parameters are shown in Figs. [S6b and [S6k. All different methods we applied
signify the local isotropy in the central network region, i.e., K2 ~ 0 despite the apparent global deformation of the
network membrane. Therefore, the above analysis justifies the use of isotropic networks in the auxiliary simulations
for the calculation of the diffusion coefficients.

H. Effects of different penetrant bulk concentrations

In Fig. [S7] we show the effect of penetrant concentration on the partitioning. Upon increasing the penetrant number
Ny by two times, the partitioning with the low attraction Se,, = 0.1 becomes larger as the network volume fraction ¢,
increases, while it becomes smaller with the large attraction fe,p, = 1.5. However, an overall characteristic behavior
of the partitioning is qualitatively similar.



a 1037\ T T T T T il b 1037 T T T ]
%Tg'.-'g(i?
102! BE‘@@@@@@@@ i 102} e @ BEEEED |
y 101t © y 101t @ | Np=10° Np=2x10°
=15 O O
100,, o | 100, ,,,,,,,,,,,,,,,,,, ﬁenp
» 68 @@ 6 8 Bg . p @‘Z@E@E (g o - BEnp=0.1 O O
107" © a1 107" Ol yr|
s ©8
1072} ® 1072} ®
0.0 02 04 06 08 1.0 01 02 03
:BEnn ¢n

FIG. S7. Effects of different penetrant concentrations on the partitioning log;, K vs. (a) €nn and (b) ¢y, for the different total
number of penetrants, N, = 10% (circles) and N, = 2 x 10® (rectangles), and for the network—penetrant interaction values of
Bénp = 0.1 (gray) and Benp = 1.5 (red).
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FIG. S8. Total network (slab) volume V4 as a function of the solvent quality enn for different values of the network—penetrant
interaction €np.

In Fig. |S_§| we show the network slab volume V,, as a function of the solvent quality €,,. As €,, increases the
volume decays rapidly until around €,, = 0.5 k7. As the network-penetrant interaction energy e, increases up
to €np = 1.5 kT, the volume considerably decreases, indicating the onset of the penetrant-induced collapse. [4] We
calculate the polymer volume fraction using ¢, = (Nm + Nxink)vo/Va, Where vg = m03/6 is the monomer volume
with the diameter o = onn = onp.

J. Scaling theories for the penetrant diffusivity

In Fig. [S9|we compare the simulation results (symbols) with various scaling theories (solid curves) for the penetrant
diffusivity in the polymer networks. In Fig. we show the free-volume theory [BHIT]

Din/DO = beic(lfi;n). (86)
In Fig. [S9p we show the hydrodynamic/obstruction theory [T} [12]
Dy /Dy = (6", (s7)
In Fig. we show the extended barrier-crossing theory [13], [14]
1
Din/Dy = (S8)

1+ aefem ()¢
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FIG. S9. Penetrant diffusivity in polymer networks compared with various scaling theories. (a) Free-volume theory (as shown
in the main text), (b) hydrodynamic/obstruction theory, (c) extended barrier-crossing theory, (d) barrier-crossing theory. See
Table [S3] for the fitting parameters.

In Fig. we show the barrier-crossing theory [14} [15]

Dy /Dy = {e—ﬁenp ((bn)_A .

TABLE S3. Parameters in the scaling theories shown in Fig. [S9] fitted from the simulation data.

Benp 0.1 0.7 1.0 1.1 1.2 1.5

b 0.86 £0.02 0.76+0.02 0.63£0.02 0.57+£0.01 0.53+£0.02 0.34+£0.01
c 417+£0.19 481+0.16 4.77£0.19 4.69+0.18 4.79£0.20 3.87+0.09
a 6.10£0.30 6.43+0.23 598+£0.22 583+0.23 596£0.22 5.35+0.35
v 0.98+£0.03 088+0.02 0.76£0.02 0.71+£0.02 0.69£0.02 0.56=+0.04
o 29.71 £4.51 22.55+£4.07 1821 +3.13 17.35+£3.06 1842+3.15 14.61+3.21
¢ 1.54+£0.07 1.50+£0.08 1.40+£0.07 1.37£0.08 1.39+£0.07 1.30=£0.11
I3 0.07£0.01 0.08+0.02 0.09£0.02 0.08+:0.02 0.08£0.01 0.08+0.02
A 0.87£0.08 097+0.09 1.01£0.08 1.02+£0.08 1.08+0.08 1.11+£0.11

All the fitting parameters are shown in Table and in Fig. 4 in the main text we show the parameters b and ¢

n
for the free-volume theory, Di, /Dy = be=<(725) from eqn We note that b is an exponentially decreasing function
of €np, while ¢ is rather independent of €,;,, which leads to our scaling expression for the penetrant diffusivity,

Din/Do ~ ¢ Pere—e(1257) (S10)

II. COARSE-GRAINING OF POLYMER BONDED PARAMETERS FROM ALL-ATOM SIMULATIONS

To obtain the parameters for the bonded potentials in our computer simulations, we used all-atom simulation setups
of poly(N-isopropylacrylamide) (PNIPAM) chains crosslinked by N, N’-methylenebisacrylamide (BIS), embedded in
water at 290 K, from previous work [I6] and as shown in Fig. In particular, we set up two different systems.
The first one comprises a BIS cross-linker with four PNIPAM monomers, i.e., each BIS’ backbone binding site is
terminated by one monomer. This system enables the study of the conformations of PNIPAM chains attached to the
cross-linker. The second system consist of a single PNIPAM trimer in water and is used to retrieve the bonding and
bending information of the polymer chains only.

A. All-atom simulation details

We employed explicit-water, all-atom molecular dynamics simulations with the OPLS-based force-field developed
in Refs [I6] and [17]. for the aforementioned systems. Twelve different initial configurations of the BIS-PNIPAM
molecule were placed in individual cubic boxes (box length ~ 4 nm) with approximately 6500 water molecules. For



FIG. S10. Illustration of an all-atom and its corresponding coarse-grained (CG) representation of PNIPAM-BIS (poly(N-
isopropylacrylamide)—N, N’-methylenebisacrylamide), i.e., one cross-linker and four attached chains with three monomers each.
The spheres represent the coarse-grained beads located at the (all-atom) monomers’ centers of masses for one cross-linker (green)
and the chain (red). In order to obtain the bonded potential parameters used in the main work, two minimal systems were
simulated on the all-atom level with explicit water (not shown) at 290 K. The first one consists of one cross-linker (labeled 1)
with four PNIPAM monomers (labeled 2, 3, 4, 5), the other one investigates a single PNIPAM trimer.

the PNIPAM trimer we created 17 replicas, each solvated in a box (box length a~ 2.5 nm) of around 1500 water
molecules.

After the initial energy minimization (steepest descent), the system was equilibrated in the NVT ensemble for 2 ns
and in the NpT ensemble for an additional 2 ns. The integration step of the leap-frog integrator was set to 2 fs and
data were collected every 1 ps during a production simulation time of 100 ns.

The linear constraint solver algorithm [I8] was used for all hydrogen bonds, and the SPC/E force-field was used
for water molecules. [T9] We considered cut-off lengths for LJ and short-range electrostatic interactions as 1 nm.
The particle mesh Ewald method with cubic interpolation with a grid spacing of 0.12 nm was used for long-range
electrostatics. [20] We used periodic boundary conditions in all three Cartesian directions. The temperature and the
pressure in the simulations were controlled by the velocity-rescale thermostat (at temperature 7' = 290 K and the
relaxation time constant 77 = 0.1 ps) and the Berendsen barostat (at pressure p = 1 bar and the relaxation time
constant 7, = 1 ps), respectively. [21] [22]

TABLE S4. Bonded parameters in eqns and determined by fitting to all-atom simulation data shown in Fig.

complementary 2-1-3 2-1-5 214

pair 4-1-5 3-1-4 3-1-5
Kypdinkm /g 85 %1074 7.2 x 107* 2.8 x 1073
G(r)nfxlinkfm/deg 113.4 114.4 80.1
Kpink /(kgT/0?) 16.4

’r'(r)n_XIink/O' 1.4

Ky kT 1.9 x 1073

05 ™™ /deg 98.2

Kr ™ /(kgT/o®) 344
ro " /o 1.3
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FIG. S11. Free energies (symbols) obtained from the all-atom simulations and fitted harmonic potentials (solid curves) given

by eqns and See text for details.

B. Bonded parameters for the polymer networks

In our simulations of the polymer network we considered two-body (stretching) and three-body (bending) bonded
potentials, which are approximated as harmonic interactions,

F () = K (Y = rg)?, (S11)
FiIk(01%) = Kk (g% — gigk)2, (S12)

where 4, j,k = m or xlink is the particle index with m for the PNIPAM monomer and xlink for the BIS cross-linker.
There are two stretching potentials F;™*™ and Ff,n"‘hf“k, and since the BIS connects four PNIPAM chains (i.e., tetra-
functional) there are six bending potentials in Fé‘""hnk‘m and one bending potential in Fg"™ ™. Therefore, we have
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nine different bonded potentials in total and we determine eighteen bonded parameters K, r/, K, Gk and 0 * by
fitting to the free energies obtained from the all-atom simulations.

In Fig. [ST1] the symbols show the free energies F, and Fy evaluated from the all-atom simulations, and the solid
curves depict the harmonic potentials shown in eqns and with fitted parameters (see Table . For analyses
we used 12 production trajectories of the PNIPAM-BIS simulations, and 17 production trajectories of the PNIPAM
simulations, respectively. The six different bending free energies Fprlink-m a¢ the BIS cross-linker are shown from
Figs. |[S11h to f. These Fé“"‘“nk‘m have three complementary pairs due to the tetra-functional geometry as shown in
Fig. We show these three pairs of the bending free energy in Figs. and b for 2-1-3 and 4-1-5 CG monomers,
Figs. and d for 2-1-5 and 3-1-4 CG monomers, Figs. and f for 2-1-4 and 3-1-5 CG monomers, respectively.
The stretching free energy F™-link hetween CG PNIPAM-BIS monomers is shown in Fig. [S11g. The bending Fjm-
and the stretching F™™ free energies in CG PNIPAM monomers are shown in Figs. and i, respectively. We
compared all the simulation data with the harmonic potentials in eqns and and determined the bonded
parameters as shown in Table [S4 The thermal energy kg7 and the LJ length o = 0.4 nm were used as respective
units.
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