## Wire-templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal (Supporting Information)

Kun Yan<sup>a,b</sup>, Chenguang Yang<sup>a</sup>, Weibin Zhong<sup>a</sup>, Zhentan Lu<sup>a</sup>, Xiufang Li<sup>a</sup>, Xiaowen Shi<sup>b\*</sup> and Dong Wang<sup>a\*</sup>

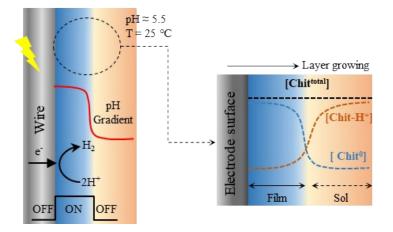
## 1. Moving front model for chitosan hydrogel growth during the ON-step

As illustrated in Fig. S1, the moving is based on several fundamental assumptions:

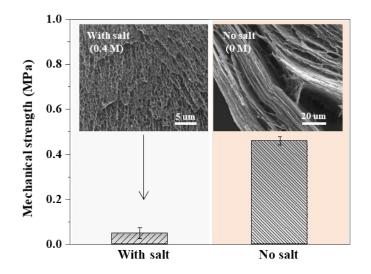
(i) Chitosan is defined into two mainly states: fully deprotonated (Chit<sup>0</sup>) and fully protonated (Chit-H<sup>+</sup>);

Chitosan's primary amines conferring a unique pH-responsiveness (pKa~6.3): at low pH the protonated amines make chitosan a soluble polyelectrolyte (as a fully deprotonated chitosan gel state) while at high pH the amines become deprotonated allowing chitosan self-assemble into a hydrogel network (as a fully protonated sol state).

(ii) Chitosan's neutralization is responsible for gelation and gelation is rapid such that the growing pH-front and growing gelation-front are co-localized;


(iii) The charge transfer associated with proton consumption at the electrode is equated to chitosan's deprotonation;

The proton consumption at the electrode is equated to the chitosan's deprotonation (i.e., no other buffering species are present to influence the proton consumption).


Proton consumption :  $2H_2O + 2e^- \rightarrow 2OH^- + H_2$ Chitosan's deprotonation : Chit-H<sup>+</sup>(sol state) + OH<sup>-</sup>  $\rightarrow$  Chit<sup>0</sup>(gel state) + H<sub>2</sub>O

(iv) Chitosan chains undergo no net migration in response to the electrical component of ON-signal and the chains concentration ( $Chit^{total} = Chit^0 + Chit-H^+$ ) is the same everywhere within the deposition cell.

## 2. Characterizations.



**Fig. S1** Schematically illustrated the assumptive concentration profiles of the fully deprotonated and fully protonated chitosan chains during deposition process.



**Fig. S2** Mechanical properties and microstructural observations of the chitosan films deposited from different salt conditions.