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I. SIMULATION MODEL

We model our filaments as discretized wormlike chains [1] with inextensible segments of length a. We have adopted
the algorithm by Montesi et. al [2] for the constrained Brownian dynamics of bead-rod wormlike chains with anisotropic
friction. The implementation of the algorithm in our simulations has been covered in previous work [3, 4]. What
follows here is an overview of the algorithm, as well as the details on our implementation of intrinsic curvature and
activity.

Filaments are represented by N sites and N−1 segments, with fixed segment length a, contour length L = (N−1)a,
and anisotropic friction, ζ⊥ = 2ζ‖. The position of each site ri is updated using a midstep algorithm
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Each site i is assigned an orientation, corresponding to the orientation of the segment attaching it to site i+ 1,
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=
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a
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The orientation of the last site of the filament is set equal to that of its only neighboring segment, so that uN = uN−1.
The velocity of each site is

vi = ζ−1
i · F

tot
i , (3)

where ζ−1
i is an anisotropic friction tensor,
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ũi ⊗ ũi +
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and ũi is the vector tangent to site i, which is the average of the orientations ui of its neighboring segments,

ũi =
(ui + ui−1)

|ui + ui−1|
(5)

for 2 ≤ i ≤ N , and ũ1 = u1, ũN = uN−1 at the chain ends.
In the absence of filament interactions and driving, the total force on site i is the sum

Ftot
i = Fbend

i + Ftension
i + Frand

i , (6)

which include bending forces, tension forces, and random forces. The random forces are due to thermal contact with a
heat bath at temperature T , with the properties 〈Frand〉 = 0 and 〈F 2

rand〉 = 2ζkBT to obey the fluctuation dissipation
theorem. The random forces are projected onto the chain such that the forces do not conflict with the constraints
due to the fixed segment length, and are described in detail by Montesi et al. [2].

The diffusivity of a rigid filament is D = kBT/ζ = kBT/Nζi, where ζi is the local friction acting on site i. The
friction depends on the filament aspect ratio L/σ, where σ is the diameter of the chain. In the regime of rigid,
infinitely thin rods, the coefficient of friction is given by [5],
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FIG. 1. Values of the global nematic order S plotted as a function of R̃ for all simulation parameters. Top row plots are for
filaments with aspect ratio L̃ = 10 and the bottom row L̃ = 20.

lim
L/σ→∞

ζ⊥ = 4πηsLε. (7)

where ηs is the fluid viscosity. Each site experiences a local friction given by

ζ i
⊥ = 4πηsaεf(ε). (8)

where ε = 1/ ln (L/σ) and

f(ε) =
1 + 0.64ε

1− 1.15ε
+ 1.659ε2. (9)

is the geometric correction factor for finite aspect ratio filaments.
The bending energy of a discrete wormlike chain for N � 1 is approximated by

Ubend = −κ
a

N−1∑
k=2

uk · uk−1, (10)

where κ is the bending rigidity, which is related to the persistence length Lp of the wormlike chain as κ = LpkBT .
Note that we are adopting the convention that the previous equation is true in all dimensions d of wormlike chains,
unlike the convention adopted by Landau and Lifshitz where κ/kBT = (d − 1)Lp/2 [6]. Our convention results in a
Kuhn length that depends on dimensionality, b = (d− 1)Lp.

The bending force is Fbend
i = −∂Ubend/∂ri. The implementation of the bending forces coincides with metric forces,

which come from a metric pseudo-potential that is necessary for the filament conformation to have the expected
statistical behavior in the flexible limit, Lp � L.

The bending forces are calculated to include metric forces resulting from a geometric pseudo-potential [2, 7]. The
metric pseudo-potential is necessary to observe the proper equilibrium behavior of discrete wormlike chains with low
persistence lengths. In the work of Pasquali et. al [8], it was shown that the bending and metric forces together are
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i =
1

a
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k
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∂ri
, (11)

where κeff is an effective bending rigidity with a conformational dependence,

κeff
i = κ+ kBTaĜ

−1
i−1,i, (12)

where Ĝ is the metric tensor [2, 8]. The derivative in Eqn. 11 can be expanded so that the equation as implemented
in our simulation is

Fbend
i + Fmetric

i =
1

a2
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k

(
(δi,k+1 − δi,k)(I− uk ⊗ uk)uk−1 + (δi,k − δi,k−1)(I− uk−1 ⊗ uk−1)uk

)
. (13)
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FIG. 2. Values of the average local polar order 〈p〉 of simulations plotted as a function of R̃ for all simulation parameters. Top

row plots are for filaments with aspect ratio L̃ = 10 and the bottom row L̃ = 20.

An intrinsic curvature was added to the filament model by modifying the bending potential in Eqn. 10 to have an
offset angle φ0,

Ubend = −κ
a

N−1∑
k=2

cos (θk,k−1 − φ0), (14)

where θk,k−1 = arccos (uk · uk−1) is the angle between site orientations k and k − 1, and φ0 = adφ/ds corresponds
to the expected angle between two segments of length a with a curvature per unit length dφ/ds.

It can be shown that the term in the sum of Eqn. 14 can be rewritten as

cos (θk,k−1 − φ0) = Ruk ·R−1uk−1, (15)

where R is a rotation matrix that rotates the orientation vector uk by an angle φ0/2,

R =

(
cos(φ0/2) − sin(φ0/2)
sin(φ0/2) cos(φ0/2)

)
, (16)

and its inverse R−1 rotates the orientation vector uk−1 by an angle −φ0/2. The combined bending and metric forces
from Eqn. 11 with intrinsic curvature are therefore

Fbend
i + Fmetric

i =
1

a

N−1∑
k=2

κeff
k

∂(Ruk ·R−1uk−1)

∂ri
, (17)

which can be expanded in the same way as Eqn. 13.
Filament driving forces are modeled as a uniform linear force density fdr that is directed along the local filament

segment orientations,

Fdr = fdrui. (18)

The assumptions of this model match observations of experiments with gliding filaments driven by a lattice of motor
proteins, which found that that filament velocities were constant, despite the persistent binding and unbinding of
motors [9].

II. MODEL IMPLEMENTATION

Simulation software for the filament model is written in C++ and the source code is publicly available online [3].
The software is also available as a pre-installed binary on Singularity and Docker images. The simulations were run
on the Summit computing cluster [10] and parallelized using OpenMP.
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FIG. 3. Values of the average contact number 〈c〉 plotted as a function of R̃ for all simulation parameters. Top row plots are

for filaments with aspect ratio L̃ = 10 and the bottom row L̃ = 20.

III. SIMULATION PARAMETERS

Important parameters of our simulation are the filament contour length L, diameter σ, bending rigidity κ, driving
force per unit length fdr, filament radius of curvature R, simulation box diameter Lsys, and filament density φ. Our

simulations have filament aspect ratios L̃ = L/σ = 10 and 20, and the system size is L̃sys = Lsys/L = 10. In our
dimensionless reduced units, σ, kBT , and D are set to be unity, where D is the diffusion coefficient for a sphere of
diameter σ, such that the viscosity is 1/3π. The driving force in reduced units is fdr = 15, such that the Péclet
number is Pe = fdrL

2/kBT ≈ 5× 104, which was chosen to avoid issues arising from the effects of filament softening
due to tangential driving [4, 11–14].

The dimensionless parameters used in our analysis are κ̃ = κ/LkBT = Lp/L, where Lp is the filament persistence

length, the filament radius of curvature R̃ = R/L, and filament density in terms of the particle packing fraction
φ = Afil/Asys, where Asys is the area of the 2D periodic simulation space and Afil = N(Lσ+πσ2) is the area occupied
by N 2D spherocylindrical filaments.

The radius of curvature R relative to the simulation box size Lsys may also be important for influencing the
organization behavior of filaments due to finite size effects. Since our results rely on computer simulations of finite
size, some of the quantified properties of individual simulations may be affected by changing the system size. However,
this would not consequentially affect the changes of system behavior that are the principal results of this work.

We used a dynamic timestep in the half-step integration algorithm, with a maximum timestep ∆t = 2.5 × 10−5τ ,
where τ is the average time for a sphere of diameter σ to diffuse its own diameter. If ever forces between any two
particles ever exceed a preset threshold of 106 reduced force units, all particles are returned to the previous full-step
positions, the timestep is reduced by a factor of 2, and forces are recalculated. The time resolution of filament positions
for the purposes of analysis are fixed to be ∆tmax. The active timescale used in our analysis is the time required for
a straight filament to glide its own length τA = l/vdr = 1/ζ‖fdr, which is 0.66τ for Pe = 5× 104.

Filaments in the simulation were initialized by randomly inserting straight filaments parallel to one axis of the
simulation box in a nematic arrangement, allowing the filaments to relax and diffuse without activity for 100τ before
introducing driving forces. Simulations terminated once they were determined to have reached a steady state, when
order parameters appeared to converge to constant values.

IV. FLOCKING ANALYSIS

Long-range structural order in our simulations filaments is captured by the nematic order parameter of the system
S, which is the largest eigenvalue of the 2D nematic order tensor

Q =
1

N

N∑
i=1

(2ui ⊗ ui − I), (19)
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FIG. 4. Values of the average spiral number 〈s〉 plotted as a function of R̃ for all simulation parameters. Top row plots are for

filaments with aspect ratio L̃ = 10 and the bottom row L̃ = 20.

where I is the unit tensor. High nematic order indicates that flocks have aggregated into giant flocks, which tend
to dominate the overall system structure. Nematic order is present for rigid filaments and large radius of curvature
(Fig. 1).

Although curvature and flexibility inhibit long-range order, polar flocks are present at all but the highest curvatures
examined here, R̃ = 0.25. Following previous work, flocking behavior was identified by measuring the filament contact

number ci
∑
i 6=j = e−(rij/σ)2 and the local polar order parameter pi =

∑
i6=j ui · uje−(rij/σ)2/ci, with sums ranging

over all filament segments, excluding intrafilament segments. The time and ensemble-average of the local polar order
all simulation parameters is plotted in Fig. 2.

Systems with polar-ordered collective motion exhibit giant number fluctuations (GNF) [15–18]. Number fluctuations
are derived from the mean 〈N〉 and standard deviation ∆N of the particle number within a subregion of the system.
Varying the size of the region leads to a power-law scaling behavior ∆N ∝ 〈N〉α. For equilibrium systems, number
fluctuations scale with the exponent α = 1/2, whereas systems with GNF exhibit scaling with α > 0.5, with the
Vicsek model having α ≈ 0.8 [16, 17].

The number fluctuation scaling for all simulations is plotted in Fig. 5. In the flocking regime with straight filaments,
filaments exhibit GNF with α ≈ 0.8. The number fluctuations decrease with increasing filament curvature, and in
some cases enters a regime with α < 0.5 indicating subdiffusive behavior, causing small density fluctuations at short
timescales.

For a driven flexible filament, there is a chance for the filament to self-interact and wrap upon itself, winding into a
spiral-like structure. We have previously measured the spiral-similarity of bent filaments using a spiral number 〈s〉 [4].
The spiral number for an individual filament is calculated by measuring the angle θi swept by traversing its contour
length from tail to head originating from the center of curvature of the filament, si = 1

2π θi. A straight filament will
have a spiral number si = 0, a filament bent into a perfect circle has si = 1, and filaments that form tightly-wound
spirals may have a spiral number si > 1.

The average spiral number for curved filaments at equilibrium will reflect the radius of curvature of the filament.
However, effects due to interactions, driving, and flexibility will modify the overall spiral number. We find that flexible
filaments with aspect ratio L̃ = 10 have higher spiral numbers than more rigid filaments at large R̃. However, we
surprisingly find that flexible filaments with intermediate R̃ have a slightly smaller spiral number than the most rigid
filaments in our simulations (Fig. 4). This is likely due to the flexible filaments forming heterochiral flocks, while

rigid filaments only form homochiral clusters. For filaments with aspect ratio L̃ = 20, filaments have a much higher
spiral number compared to other rigidities when filaments have small radius of curvature, R̃ = 0.25, indicating the
formation of tightly-wound and dynamically frozen spirals. The formation of these structures is likely the cause of
the subdiffusive behavior for flexible filaments even at long times.



6

FIG. 5. Values of the exponential scaling α for the number fluctuations in the system ∆N ∝ 〈N〉α plotted as a function of R̃

for all simulation parameters. Top row plots are for filaments with aspect ratio L̃ = 10 and the bottom row L̃ = 20.

V. MEAN-SQUARED DISPLACEMENT

The mean-squared displacements (MSD) of filaments for both inactive and active filaments were calculated using

the equation 〈
(
r(t) − r(t0)

)2〉, where the brackets 〈...〉 denote an average over the ensemble of filaments and time

averages for different values of t0 separated by a minimum of 10τA. Example MSDs for L̃ = 10 are plotted in Fig. 6
on a log-log scale, with the gray dashed line denoting linear time-scaling behavior.

The effective diffusion coefficient for active filaments Dactive was calculated using the final 25τA interval of the MSD
to limit analysis to long-time transport behavior of filaments, assuming a linear time scaling. To determine whether
the long-time behavior was diffusive, we calculated the power-law scaling of the effective diffusion coefficient with

respect to time, 〈
(
r(t)− r(t0)

)2〉 ∝ Dtα by measuring the slope of the log-log transform of the MSD using a weighted
least squares linear regression model, with weights derived from the standard error of the mean for values of the MSD.

Single active achiral filaments have a MSD that is superdiffusive due to their ballistic trajectories, while single active
curved filaments are diffusive (see Fig. 7). Collective dynamics are required to make curved filaments superdiffusive

as seen for flocking filaments with R̃ = 2, or subdiffusive at short timescales when curved filaments form clusters.

VI. IDENTIFICATION OF FILAMENT CLUSTERS

To quantify the dynamics and structure of the filament clusters, filaments were clustered by their centers of curvature
rc(t), determined from the filaments’ instantaneous radius of curvature R(t) averaged over the contour length of
the filament. Cluster positions are defined to be the average of their constituent filament centers of curvature,

rC(t) = 1
n

∑n
i r

(i)
c (t), and the cluster radii are defined to be the average of the constituent filament curvature radii

Rc(t) = 1
n

∑n
i Ri(t).

Unclustered filaments can join an existing cluster when |r(i)
c (t) − rC(t)| ≤ Rc(t) for a time interval of τA. Two

previously unclustered filaments can form a new cluster if their centers of curvature are bounded by the average of

their curvature radii, |r(i)
c (t)− r

(j)
c (t)| < (Ri(t) +Rj(t))/2 for a minimum time interval of τA. Filaments can leave a

cluster if their center of curvature leaves the bounded space defined by the curvature position and curvature radius
for an interval of 0.25τA, or if ever the filament center of curvature is no longer oriented in the direction of the cluster
position, (rc(t)− ri(t)) · (rC(t)− ri(t)) < 0. A cluster is annihilated if ever the number of filaments in the cluster is
less than 2.

Fig. 8 compares the average cluster radius 〈R̃〉 (normalized by the filament length) for homochiral and heterochiral
systems. At large filament curvature radii, slightly larger clusters appear to be possible, which are possibly limited by
finite size effects. However, there does not appear to be a significantly different cluster scaling between heterochiral
and homochiral systems.
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FIG. 6. Mean-squared displacements (MSDs) plotted for L̃ = 10 for heterochiral systems with φ = 0.25, showing the short-
and long-time scaling behavior. The effective diffusion coefficent Dactive was found by fitting the final 25τA of the MSD.

VII. RANDOMNESS OF FILAMENT CLUSTERS

We assessed whether the clusters of filaments with small radius of curvature R̃ ≤ 0.5 sorted macroscopically into
larger domains of homochiral clusters by measuring the mixing between left-handed (LH) and right-handed (RH)
clusters. Upon identifying the cluster positions, described above, we constructed an adjacency matrix X representing
a graph with cluster centers as vertices and edges joining the cluster nearest neighbors. In a well-mixed (random)
system, the handedness of nearest neighbors for any one vertex should be ±1 with equal probabilities. This would

imply that each vertex of X would have adjacent neighbors with a net handedness Σ =
∑adj
i χi that should be zero

on average but with normal variance from a randomly distributed network. In a system with sorted domains, the
nonrandom distribution of handedness among clusters would give rise to a bimodal distribution of Σ, and a nonrandom
lattice with approximately alternating handedness would be unimodal with zero mean and very small variance.

In Fig. 9 the distribution of Σ (right) associated with the simulation image (left) is shown in red. The distribution
appears normal with zero mean, and is contrasted with distributions of Σ for nonrandom distributions of handedness.
The adjacency graph associated with the image is plotted in the center. There does not appear to be any sign of
macroscopic sorting in the distribution, so we must conclude that the distribution of handedness among the clusters is
random. This approach was repeated for different simulation parameters, without any indication of nonrandomness.

VIII. DIAGRAMS OF SIMULATION IMAGES

Figs. 10–13 are diagrams of simulation images for the collective behavior displayed for varying R̃ and κ̃ for homochiral
and heterochiral filaments at filament densities φ = 0.25 and 0.5 and filament aspect ratios L̃ = 10 and 20.

Noteably, Fig. 10 and Fig. 13 have images of filaments with R̃ = 2 that highlight the breakdown of long-range polar
order for rigid filaments (κ̃ = 1000) due to the filament packing, as mentioned in the main text.
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FIG. 8. Top row: the fraction of simulation filaments in an average cluster 〈F 〉 for homochiral and heterochiral systems. Center

row: average cluster radius 〈R̃〉 plotted for homochiral and heterochiral systems. Bottom row: Average cluster lifetime 〈τ〉 for
homochiral and heterochiral systems plotted with respect to radius of curvature. Lifetimes are expressed in units of τA.
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FIG. 9. Left: simulation image for a heterochiral mixture of homochiral clusters. Center: The associated adjacency graph
joining the centers of clusters to their nearest neighbors, with with clusters of mixed handedness being assigned a handedness
of zero. The graph does not show edges between vertices across periodic boundaries, although these edges were present in our
analysis. Right: the distribution of the sum of neighbor handedness Σ for each vertex, plotted for the associated simulation to
the left (shown in red), contrasted with distributions for the same adjacency graph with hypothetical nonrandom handedness
distributions.
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FIG. 10. Simulation images for filaments with L̃ = 10 and packing fraction φ = 0.25 for homochiral (top) and heterochiral
(bottom) systems.
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FIG. 11. Simulation images for filaments with L̃ = 10 and packing fraction φ = 0.50 for homochiral (top) and heterochiral
(bottom) systems.
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FIG. 12. Simulation images for filaments with L̃ = 20 and packing fraction φ = 0.25 for homochiral (top) and heterochiral
(bottom) systems.
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FIG. 13. Simulation images for filaments with L̃ = 20 and packing fraction φ = 0.50 for homochiral (top) and heterochiral
(bottom) systems.


