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Abstract

This Supplementary Material contains additional figures and analytic results which further illustrate the

point made in the main text.
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I. SUPPLEMENTARY FIGURES
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FIG. S1: Preliminary simulations testing the dynamics of an active Brownian particle (ABP) in free space.

(Left) The autocorrelation property of the propulsion velocity Vp(t) of an ABP simulated at Pe = 1, 5, and

10 is shown. In our model, the self-propulsion of the ABP is modeled by an active noise of the Ornstein-

Ulhlenbeck (OU) type and generated in the simulation using Eq. (4) in the main text. The simulation data

are then compared to the theoretical expectation (dashed line) 〈Vp(t0) ·Vp(t0+ t)〉= v2
p exp(−t/τA) with the

input correlation time τA = 1. (Right) The MSD of a single ABP in free space at Pe= 0, 1, and 5. We validate

our simulation code via the simulation of an ABP in free space using Eq. (1) and compare the MSDs with

the theoretical curve. The simulation data (symbol) are in excellent agreement with the analytical theory

〈∆R2(t)〉 = 6Dt + 2v2
pτ2

A

(
t/τA + e−t/τA−1

)
. The ABP has a self-propelled dynamics ∼ t2 for t � τA and

beyond this time scale shows an athermal Fickian motion with a diffusivity Deff = D+ v2
pτA/3.
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FIG. S2: Dynamics of the active star polymers where all beads are of the same ABP. These systems are

simulated for the star polymers with the functionality f = 3, the length of the arm chain N = 100, and

Pe = 0, 5, 10, and 25. In the plot, the MSDs of the cross-linkers for the four Pe conditions are presented.

The results show that, contrary to the systems studied in the main text, the cross-linkers in this system

always exhibit the Rouse-like subdiffusion ∼ t1/2 for any Péclet numbers. Regarding this behavior, we

provide the analytic theory in Sec. II B in the Supplementary Material.
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FIG. S3: The MSD of the Brownian cross-linker at the stationary state vs. f . The data (symbol) is for

the star polymer with the fixed boundary conditions and N = 100. The solid line represents the expected

theory 〈∆R2
A(Pe = 0)〉st = 6NkBT/ f k [1], illustrating the scaling relation for MSD decaying as 1/ f with

the functionality.
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FIG. S4: The stationary value of MSD vs. f . Here the plotted MSD is contributed to solely by the active

noise, divided by v2
p. All the data at different Pe values collapse onto each other. The solid line shows

the fit to the data with the corresponding theoretical expression in Eq. (8) [main text]. The data scales

approximately as f−2.
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FIG. S5: The MSDs for the ABP cross-linker for N = 10 (Left) and N = 20 (Right). As shown in the main

text (Fig. 7), the dynamics of ABP cross-linker at t . τR does not depend on the conditions of the boundary

as long as the length of the arm N is sufficiently long (e.g., N = 100 in the ABP-polymer system considered

in the main text). Here, the supplementary simulations show that the boundary-free ABP dynamics at t . τR

is preserved until the arm length is decreased to N = 20 (Right). When N is decreased as short as N = 10

(Left), the dynamics of ABP cross-linker depends on the boundary conditions. The simulation parameters

are the same as in Fig. 7.
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FIG. S6: Comparison between the theoretical VACF curves (solid line) and the VACFs obtained from the

simulation (symbol) for the ABP cross-linker for t ≥ δ t. The theoretical lines are obtained by numerically

evaluating Eq. (35) [main text]. In the simulation, we use f = 2 and N = 100. Our theory Eq. (35) excellently

explains the VACFs in the simulation for various Pe conditions.
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FIG. S7: Simulation results for a new ABP-polymer system where the active cross-linker is governed by

an athermal white gaussian noise (WGN). In this plot, the MSDs for the ABP cross-linker in a polymer

( f = 2) with the free boundary conditions are presented. Refer to Sec. II D in the Supplementary Material

for further information about this system and the WGN introduced. The strength of the WGN is controlled

by its effective temperature TA; see the definition of TA in Eq. (S18). In the simulation above, the active

temperature is increased from TA/T = 0 to TA/T = 500. The solid line depicts the analytic expectation of

the MSD obtained as the sum of Eqs. (S19), (S20), and (S22). Note that the ABP cross-linker of this model

also has a logarithmic growth (∼ ln t) in MSD at a higher TA condition [e.g., the case for TA/T = 500]. The

expected limiting MSD curve is Eq. (S22), shown in the dashed line above.

8



II. SUPPLEMENTARY THEORETICAL ANALYSIS

A. Numerical implementation for Langevin dynamics simulation

In this section, we describe in detail the numerical implementation for the Langevin dynamics

simulations performed in this work. The equation of motion and the simulation variables shown

below are given in terms of the basic length [σ ] = b (the bead diameter), time [τ] = [b2/D] (D: the

diffusivity), and the energy [ε] = kBT (T = 300 K).

The original governing Langevin equation (5) in the main text can be rewritten as in the fol-

lowing discrete form for simulation:

V(t) = F({R(t)})+Vth(t)+Vp(t),

R(t +∆ t) = R(t)+V(t)∆ t.
(S1)

In this expression, for simplicity we drop down the bead index. V(t) and R(t), respectively,

denote the velocity and the position of a given monomer at time t; F({R(t)}) is the velocity from

the deterministic forces from the harmonic interactions, namely, F = −k ∑
f
l=1

(
R0(t)−R(l)

1 (t)
)

for the center ABP cross-linker and F = −k
(

2R(l)
i (t)−R(l)

i+1(t)−R(l)
i−1(t)

)
for the i-th bead in

the l-th arm chain. Vth(t) is the random velocity from the thermal noise, numerically obtained

from a gaussian distribution with the variance
√

6kBT/[γ∆ t]. Vp(t) = η(t)/γ is the propulsion

velocity for the ABP cross-linker while Vp = 0 for the Brownian beads in the polymer network.

In the simulation the propulsion velocity is generated independently from the governing equation

(4) introduced in the text, i.e.,

dVp(t)
dt

≡ V′p(t) =−τ
−1
A Vp(t)+

√
2v2

p

τA
ζ(t), (S2)

where τA is the correlation time of the active OU noise, ζ(t) the white gaussian noise with a

variance
√

1/∆ t, and vp is the amplitude of the propulsion velocity. From Eq. (S2) the propulsion

velocity at the next time step is updated by the rule

Vp(t +∆ t) = Vp(t)+V′p(t)∆ t. (S3)

The autocorrelation of the propulsion velocity then satisfies the relation 〈Vp(t1) · Vp(t2)〉 =

v2
p exp(−|t1− t2|/τA), see Fig. S1.

For the numerical integration of the stochastic equation (5) in the main text, we use the second-

order Runge-Kutta algorithm (particularly, the Heun’s method [2]). In this algorithm, we first
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calculate the intermediate position R̂ and velocity V̂ at t +∆ t from the position and velocity at t

via the relation:
R̂(t +∆ t) = R(t)+V(t)∆ t,

V̂(t +∆ t) = F({R̂(t +∆ t)})+Vth(t)+Vp(t).
(S4)

Then, the position of the particle at t +∆ t is obtained to

R(t +∆ t) = R(t)+
1
2
(
V(t)+ V̂(t +∆ t)

)
∆ t. (S5)

In order to remove the initial condition dependence, in the simulation the systems are relaxed

during the period of 104τ , which is longer than the Rouse time scale τR of the system. All the

statistics are obtained after the relaxation process.

For the simulations with the fixed boundary condition, we fixed the end points on a circle of

radius bN1/2, which is the average end-to-end distance of the arm chain. It turns out that the

position of the ends is irrelevant for the simulation results.

B. Dynamics of active Rouse chain

We study the collective dynamics of an active polymer system where all the beads are the same

active Brownian particles (ABPs) considered in the main text. Recall that we have simulated this

system and measured the MSD of the active cross-linker for various Péclet numbers in Fig. S2. The

simulation results show that the MSD scales as∼ t1/2 for any Pe conditions. In this supplementary

analysis, we confirm this scaling behavior with the analytic expression of MSD for the active cross-

linker.

In the case when all the beads in the polymer are of the same ABPs, the transformed active

noise has the autocorrelation

〈η̃p(t) · η̃q(t ′)〉=
γ2v2

p

4N
e−
|t−t′|

τA δp,q
(
1+δp,0

)
. (S6)

N is the number of beads in each arm, γ the frictional coefficient of the bead, vp the self-propelled

velocity, and τA is the correlation time of the active OU noise. Compared with Eq. (13) in the

main text, this transformed active noise Eq. (S6) have the same temporal correlation; however,

the prefactor 1/N2 is changed to 1/N, and there is no mode-couping in the active noise, i.e.,

δp,q
(
1+δp,0

)
/2.
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Using the same mathematical techniques described in the main text, we derive the analytical

expression for the ensemble-averaged MSD such that

〈∆R2(t)〉= 3D
N

(
t +
√

πτRt
(

1− erf
(√

t
τR

))
− 3τR

2

(
e−

t
τR −1

))
+

v2
pτ2

A

N

(
e−

t
τA −1+

t
τA

)

+
v2

pτAτR

N

√πt
τR

(
1− erf

(√
t

τR

))
+

3
2

(
1− e−

t
τR

)
+

π

(
e−

t
τA + e

t
τA −2

)
4
√

τR/τA

−π

4

√
τA

τR
e−

t
τA erfi

(√
t

τA

)
− π

4

√
τA

τR
e

t
τA erf

(√
t

τA

)
+

e−
t

τA −1
2(τR/τA +1)

]
.

(S7)

In Sec. IV in the main text, the dynamics of the active particle consist of three separate terms;

the drift M(1), the Rouse dynamics M(2), and the active collective dynamics M(3). The first line

of Eq. (S7) is identified to the sum of the drift motion and the Rouse dynamics, which displays

∼ t1/2 at t � τR and recovers the diffusive behavior at a later time. The Rouse dynamics term in

Eq. (S7) is marginally different from the one in the main text Eq. (26) in the sense that, here, it

is the ensemble-averaged Rouse dynamics while in the main text it is the dynamics only for the

active cross-linker at bead index s = 0. The second and third lines of Eq. (S7), M(3), describe

the collective dynamics by viscoelastic feedback of ABPs. In the limit of intermediate time scale

τA� t� τR, the remaining collective dynamics M(3) can be written as

M(3) ≈

(
3D
N

+
v2

pτA

N

)
√

πτRt ∼ t1/2. (S8)

Hence, we have demonstrated that, in the Rouse relaxation time, the collective dynamics from the

active contribution scales as ∼ t1/2. Therefore, the MSD (S7) grows as ∼ t1/2 at the time scale of

our interest for any Pe conditions.

C. Velocity autocorrelation of the ABP cross-linker

In this section, let us derive the analytic expressions [Eqs. (35), (36), and (37)] of the velocity

autocorrelation (VACF) that discussed in the main text. The VACF can be written formally using
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the normal modes as in the following:

Cv(t;δ t) =
1

δ t2

[
〈∆ X̃0(t + t0;δ t) ·∆ X̃0(t0;δ t)〉

+2
∞

∑
p=1

(
〈∆ X̃0(t + t0;δ t) ·∆ X̃p(t0;δ t)〉+ 〈∆ X̃p(t + t0;δ t) ·∆ X̃0(t0;δ t)〉

)
cos
(

pπ(s+N)

2N

)

+4
∞

∑
p=1

∞

∑
q=1
〈∆ X̃p(t + t0;δ t) ·∆ X̃q(t0;δ t)〉cos

(
pπ(s+N)

2N

)
cos
(

qπ(s+N)

2N

)]
.

(S9)

Since all the terms in the VACF are expressed in terms of the autocorrelation of the normal modes,

it is doable to analytically calculate Eq. (S9). For this, let us express Cv(t;δ t) = (A1 + A2 +

A3)/δ t2, with the three terms representing each line in Eq. (S9). The first term A1 explains the

VACF for the drift of C.O.M from the active noise and reads

A1 = 〈∆ X̃0(t + t0;δ t) ·∆ X̃0(t0;δ t)〉

=
v2

pτA

2N2 e−
t

τA

[
1− cosh

(
δ t
τA

)]
.

(S10)

As shown, this term exponentially decays out with time t, and its characteristic time is that of the

active noise τA. For the time scale of our interest, t � τA, it therefore vanishes and gives almost

no effect to Cv(t;δ t). For this reason, this term is ignored in the expression of Cv(t;δ t).

We note that the expressions of A2 and A3 can be merged into a unified form. To show this, we

calculate A3 using the Euler-Maclaurin formula ∑
∞
q=1 f (q)'

∫
∞

0 dq f (q)− f (0)/2. It turns out that

the term − f (0)/2 exactly cancels out A2. Then, the sum of the two is given by

A2 +A3 = 4
∞

∑
p=1

∫
∞

0
dq 〈∆ X̃p(t + t0;δ t) ·∆ X̃q(t0;δ t)〉 cos

(
pπ(s+N)

2N

)
cos
(

qπ(s+N)

2N

)
.

(S11)

Using the expression of 〈∆ X̃p(t) ·∆ X̃q(t ′)〉, Eq. (15) in the main text, we perform the integral in

the above expression and arrive at

A2 +A3 =
∞

∑
p=1

6DτR

N p2 e−
p2t
τR

(
1− cosh

(
δ t
τA

))
cos2

( pπ

2

)
+

∞

∑
p=1

v2
pτRπ

2N2 p
cos2

( pπ

2

)
e−

p2t
τR

(
1− cosh

(
δ t
τA

))(
1

p2/τR +1/τA
− 1

p2/τR−1/τA

)

+
∞

∑
p=1

v2
pτRπ

2N2 p
cos2

( pπ

2

)
e−

t
τA

(
1− cosh

(
δ t
τA

))(
1

p2/τR +1/τA
+

1
p2/τR−1/τA

)
.

(S12)

12



Since we are typically interested in the ABP dynamics at the time scales of t � τA, the last line

can be neglected compared to the first two. The first line of Eq. (S12), V1, is evaluated to

V1 =
∞

∑
p=1

6DτR

N p2 e−p2t/τR

(
1− cosh

(
δ t
τA

))
cos2

( pπ

2

)

=
3D
2N

{√
4πτR

√t erfc

(√
4t
τR

)
−
√

t +δ t
2

erfc

√4(t +δ t)
τR


−
√

t−δ t
2

erfc

√4(t−δ t)
τR

]+ 3τR

2
e−

4t
τR

(
1− cosh

(
4δ t
τA

))}
.

(S13)

In the limits of t� τR and δ t� τR, we can simplify the expression of V1 and finally obtain

V1 ≈
3D
√

πτR

2N

[
2t1/2− (t +δ t)1/2− (t−δ t)1/2

]
=

3D
√

πτR

2N
C(th)

v (t) .
(S14)

Note that C(th)
v (t) is the covariance of FBM with the Hurst exponent H = 1/4, which is responsible

for the Rouse dynamics in the MSD of the ABP cross-linker. Likewise, we can also derive the

expression for the second line of Eq. (S12). For 4τA� τR, this term, V2, is analytically evaluated

such that

V2 =
∞

∑
p=1

v2
pτRπ

2N2 p
cos2

( pπ

2

)
e
−p2t

τR

(
1− cosh

(
δ t
τA

))(
1

p2/τR +1/τA
− 1

p2/τR−1/τA

)
4τA�τR'

v2
pτRτAπ

8N2 ×[
2Γ

(
0,

4t
τR

)
−Γ

(
0,

4(t +δ t)
τR

)
−Γ

(
0,

4(t−δ t)
τR

)
+ e

−4t
τR

(
2−2cosh

(
4δ t
τR

))]
.

(S15)

In the limits of δ t� τR and t� τR, we obtain

V2 '
v2

pτAτRπ

8N2 [ln(t +δ t)+ ln(t−δ t)−2ln t]

=
v2

pτAτRπ

8N2 C(ac)
v (t) .

(S16)

This is the VACF from the active collective motion of the ABP cross-linker, which results in the

logarithmic growth of the MSD. We also find that for t � δ t, C(ac)
v ∼ ∂ 2

t ln(t) ∝ −t−2, showing

a power-law decay with the exponent 2. Collecting Eqs. (S14) and (S16), we finally obtain the

expression for the VACF as

Cv (t;δ t) =
τRτAv2

pπ

8N2

[
B C(th)

v (t)+C(ac)
v (t)

]
, (S17)

where B = 12DN/[τAv2
p
√

πτR]. This ends up the derivation of Eq. (35) in the main text.
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D. Anomalous diffusion of the active cross-linker with athermal white gaussian noise

In this section, we consider a new active polymer system where the center cross-linker is mod-

eled by an athermal noise different from the OU noise defined in Eqs. (2) and (4) in the main

text. Particularly, our focus is to show that the ABP cross-linker exhibits the consistent dynamic

behaviors as observed in the main text for the ABP modeled with Eqs. (1) & (2), in terms of MSD.

Instead of the active OU noise, we now introduce an athermal white gasussian noise (WGN),

which has 〈η(t)〉= 0 and the autocorrelation

〈η(t) ·η(t ′)〉= 6γAkBTAδ (t− t ′). (S18)

Here, TA is the effective temperature for the athermal WGN and γA is the frictional coefficient

of the active particle. We repeat the Langevin dynamics simulations for this new ABP-polymer

system with the athermal WGN and have investigated the MSD dynamics of the active cross-

linker. Fig. S7 summarizes the results. One of the highlights is that when TA � T (where T is

the heat bath temperature), the MSD displays a logarithmic increase in time, i.e., MSD∼ ln t, as

observed in the ABP cross-linker in the main text. Below we explain this with analytic analysis of

the MSD.

Using the normal mode expansion and repeating the same procedure shown in the main text,

we find that the MSD of the active cross-linker in this model is given by 〈∆R2
0(t)〉 = M(1)

0 (t)+

M(2)
0 (t)+M(3)

0 (t), similarly to the case of the OU noise. Here, the first term in the R.H.S. describes

the drift of the total system

M(1)
0 =

3kBT
Nγ

t +
3kBTA

2N2γ
t, (S19)

each of which reflecting the contribution from the thermal or active noise in the system. The

second term, M(2)
0 , is responsible for the Rouse dynamics from the thermal noise and the same

expression as in Eqs. (26) and (32),

M(2)
0 =

3D
2N

(
2
√

πτRt

(
1− erf

(√
4t
τR

))
− 3τR

2

(
e−

4t
τR −1

))
. (S20)

Finally, the third term is from the active collective dynamics and given by

M(3)
0 =

2N

∑
p=1

6kBTAτR

N2γ
cos2

( pπ

2

)[1− e−p2t/τR

p2

]

+
2N

∑
p=1

2N

∑
q=1

12kBTAτR

N2γ
cos2

( pπ

2

)
cos2

(qπ

2

)[1− e−p2t/τR

p2 +q2

]
.

(S21)
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In this expression, the upper limit of the summation is fixed to 2N to prevent the divergence of

the sum (i.e., the number of the mode is 2N). After some tedious calculations we obtain the

closed-form of M(3)
0 , as in the following:

M(3)
0 =

3kBTAπτR

4N2γ

[
1− e−

4t
τR +2lnN−Γ

(
0,

4t
τR

)
+Γ

(
0,

4N2t
τR

)]
≈ 3kBTAπτR

4N2γ

[
γE + ln

(
4N2t

τR

)]
.

(S22)

In the above, the last expression is obtained from the first line in the limit of τR/4N2� t � τR.

Note that in Eq. (S22) Γ (0,4t/τR) behaves as ≈− ln(4t/τR)− γE +4t/τR, where γE = 0.5772 is

the Euler-Mascheroni constant. In this model, TA has a similar role for v2
p in the ABP cross-linker

considered in the main text. While the prefactor in Eq. (S22) linearly depends on TA, the Rouse

term M(2)
0 does not depend on it. Therefore, in the limit of TA� T the active collective term M(3)

0

dominates over M(2)
0 in the MSD dynamics of the cross-linker, which increases logarithmically

with time t. We confirm this with the simulation data shown in Fig. S7. Without a fit, the theoretical

line M(3)
0 (t) [2nd line of Eq. (S22)] successfully explains the MSD curves at high TAs.
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