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1 Metadynamics

Metadynamics is an enhanced-sampling technique based on the addition of an adaptive
external potential [1, 2]. Given the system’s coordinates, x, and its original potential
energy, U0(x), we add to it a time-dependent bias potential, V , specified along specific
collective variables (CVs), z(x). The resulting potential reads

Ub(x, t) = U0(x) + V (z(x), t). (S1)

Metadynamics implements a bias constructed from a sum of Gaussian functions centered
on the visited points

V (z(x), t) =
∑
t′

w(t′) exp

(
−|z(x(t))− z(x(t′))|2

2(δz)2

)
, (S2)

where w(t′) scales the height of the Gaussian, δz is the Gaussian width, and t′ =
τG, 2τG, . . . is the time lag corresponding to adding Gaussians.
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The bias potential will push the system to climb free-energy barriers along the CV
space. Convergence of the method will lead to free diffusion of the system along the CVs.
The bias potential thereby directly connects with the free energy via a time-dependent
constant, G(z) = −V (z, t) + c(t) [3].

The permanent addition of contributions to the bias potential typically leads to spu-
rious fluctuations in the free energy. To mitigate this, well-tempered metadynamics [4, 5]
proposes to tune the weight, w, as a function of time w(t) = w0τG exp (−V (z, t)/kB∆T ).
This leads to a bias deposition rate that decreases like 1/t. The parameter ∆T regulates
the extent of the free-energy exploration.

We further use a reweighting method from Tiwary and Parrinello [6] to construct a
time-independent estimator of the probability distribution of the CVs

P (z) = Pb(z)e−β[V (z,t)−c(t)]. (S3)

The offset c(t) is determined from

c(t) =
1

β
ln

∫
dz exp

[
γ
γ−1

βV (z, t)
]

∫
dz exp

[
1

γ−1
βV (z, t)

] , (S4)

where γ = T+∆T
T

is the so-called biasing factor.

2 Collective variables

The efficiency of Metadynamics is strongly influenced by the choice of the CVs. Ideally
the CVs should satisfy three properties [7]:

1. In the CV space, metastable states and transition states must be clearly distin-
guished as separate regions.

2. The CV space must not contain hidden barriers which are important for transitions
and can describe all relevant “slow” processes.

3. The CVs should be limited in numbers, otherwise it will lead a high-dimensional
space and take a considerable time to fill the free energy surface.

2.1 Unbiased simulations

In practice, a preliminary evaluation about the first requirement (distinguishability)
is often made from the unbiased MD simulations. These runs are short enough that
significant changes of crystalline structure are unlikely to occur.

Here we choose five phases, e.g., α, β, mix-1, mix-2 and amorphous. α and β are the
main stable phases observed in experiments, while mix-1 and mix-2 are the intermediate
phases (see Fig. S1).
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Figure S1: (a) mix-1 phase, (b) mix-2 phase, where mix-1 is close to α phase and mix-2
is close to β. (c)(d) Angle distributions between transverse vectors, v2, for five different
phases: α, β, mix-1, mix-2, and amorphous. (c) 0.75 nm cutoff; (d) 3.0 nm cutoff.

The figure shows two different cutoffs, up to which we compute the angle distributions:
0.75 nm and 3.0 nm. The small cutoff, which only considers the nearest pairs, leads to
distributions for α and β containing a single peak, and an amorphous amorphous phase
that is virtually flat. The angle distribution of mix-1 features two main peaks centered at
90◦ and 180◦, while mix-2 yields a single peak, analogous to β. The longer cutoff, which
includes a second set of neighbors, leads to more peaks in the different distributions.

2.2 Legendre polynomial P2

In Fig. S2 (a) and (b), we compare for each phase the time evolution of P2 applied to
the longitudinal vector v1, P2(v1), and the transverse vector v2, P2(v2). As illustrated in
Fig. 1 of the main text, both vectors are constructed from intra-chain contributions, but
only v2 can probe inter-chain geometries. Unsurprisingly, we find that P2(v1) can only
separate between amorphous and crystalline phases, but not among them. Turning to
P2(v2) instead, we find a much better separation of the different phases.
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Figure S2: Time evolution of various CVs monitoring different phases from unbiased MD
simulations. (a) P2 order parameter applied to the longitudinal vector, v1; (b) P2 applied
to the transverse vector v2; (c) SMAC ∆S = Sβ − Sα.

4



2.3 SMAC

In Figure S2 (c), it is clear that this ∆S can significantly distinguish the four crystalline
phases, which can play a vital role in observing the pathway between α and β phases.

Table S1: Parameters used for the CVs used in this work: SMAC and P2(v2). Mul-
tiple entries in θn correspond to a simultaneous monitoring of several reference angles.
Additionally, ∆S is constructed from the CVs for α and β: ∆S = Sβ − Sα.

CV rσ [nm] rΨ [nm] θn [◦] σn [◦]
Sα 0.75 3.0 120 25
Sβ 0.75 3.0 170 25
S1 3.0 3.0 0; 120; 170 12
S2 3.0 3.0 65; 120 25
S3 0.75 3.0 120; 170 12

P2(v2) 3.0 – – –

2.4 Steinhardt parameter Q6

Steinhardt parameters [8, 9] are order parameters that can describe the spherical
symmetry of the system. They quantify orientational order using spherical harmonics
computed on the polar angles of each bond in the system. Here, the bond is not a covalent
bond but simply a vector connecting two beads within a pre-defined coordination radius.

The Steinhardt parameter Q6 for each particle is a vector whose components are
calculated using the following formula:

q6m(i) =

∑
j σ(rij)Y6m(rij)∑

j σ(rij)
, (S5)

where {Y6m} are the 6th order spherical harmonics and m runs from −6 to +6. With
Steinhardt parameter, we do not associate a direction with a particular “bond”, but
project all vectors onto even spherical harmonics.

We calculate the mean of the vectors q6m(i) and then take the norm of the resulting
mean vector, which is called “vmean”. Figure S3 shows that with vmean of Q6, we can
separate amorphous and mixture phases from α and β phases. Unfortunately, α and β
phases seem to have the same degree of symmetry and cannot be distinguished.
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Figure S3: The time evolution of Q6-vmean, i.e., taking the norm of the mean vector.

3 Two-dimensional metadynamics

3.1 ∆S & Q6

In Figure S4 (a), the α, β and mixture phases are indeed separated clearly. However,
no transitions between α and β forms are observed with this CV-space (Figure S4 (b)(c)).
We observed no transition within 200 ns of simulations. This strongly suggest that the
set of CVs is inappropriate, hiding significant barriers.

3.2 Q6 & P2(v2)

A Metadynamics simulation showed no transition between the α and β phases (data
not shown).

4 Free-energy profiles as a function of system size

Figure S5 compares the 1D projection of the free-energy surface along ∆S for two
types of size changes: (i) Number of monomers per chain and (ii) number of chains.
Both variations lead to consistent profiles. In light of sampling challenges, we adapted
the simulation temperature to facilitate convergence. Simulation time and temperature
of each system simulation:

• Nmon = 10, N chain = 12: temperature T = 400 K, simulation time t = 3 µs.
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Figure S4: Two-dimensional CV-space: Q6 & ∆S. (a) Two-dimensional free energy
landscape calculated from the Metadynamics simulations. The time evolution of the CVs
during the simulations: (b) Q6; (c) ∆S. There is no transition between α and β forms.
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• Nmon = 14, N chain = 12: temperature T = 400 K, simulation time t = 2 µs.
• Nmon = 10, N chain = 12: temperature T = 600 K, simulation time t = 1 µs.
• Nmon = 10, N chain = 36: temperature T = 600 K, simulation time t = 0.5 µs.

4.1 Quantum-chemical methods

Phonon modes are computed to confirm the stationary points as local minima and to
give access to temperature-dependent harmonic enthalpy (HHA) and Gibbs free energy
(GHA)

HHA(T, P ) = Elatt +HHA
vib (T ) + PV , (S6)

GHA(T, P ) = Elatt +GHA
vib (T ) + PV . (S7)

Here, Elatt is the zero-temperature internal energy of the crystal given per monomer unit.
The vibrational internal energy contributions are

HHA
vib (T ) =

∑
k,p

[
h̄ωk,p

2
+

h̄ωk,p

e
−

h̄ωk,p
kBT − 1

]
(S8)

and the vibrational contributions to the Gibbs free energy are

GHA
vib (T ) =

∑
k,p

h̄ωk,p

2
+ kBT

∑
k,p

[
ln

(
1− e

−
h̄ωk,p
kBT

)]
. (S9)

The phonon frequencies ωk,p correspond to a k-point in first Brillouin zone and a phonon
band index p.
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Figure S5: Free-energy profiles as a function of ∆S for different system sizes. (a) Change
in the number of monomers per chains, simulated at T = 400 K; (b) change in the number
of chains, simulated at T = 600 K.
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