Supplementary Information for:

Field-induced anti-nematic and biaxial ordering in binary mixtures of discotic mesogens and spherical magnetic nanoparticles

Stavros D. Peroukidis,**a Sabine H. L. Klapp,*b and Alexandros G. Vanakaras*

^a Department of Chemical Engineering, University of Patras, 26504 Patras, Greece. E-mail: peroukid@upatras.gr and Hellenic Open University, 26222 Patras, Greece ^b Institute of Theoretical Physics, Secr. EW 7-1, Technical University of Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany. ^c Department of Materials Science, University of Patras, 26504 Patras, Greece.

I. DETAILS ON THE GAY BERNE POTENTIAL

The discs interact via a modified Gay-Berne (GB) potential, that is, [1]

$$U_{ij}^{\mathbf{r}}(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \mathbf{r}_{ij}) = 4\varepsilon(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{ij}) \left[\left(\frac{\sigma_{0}}{|\mathbf{r}_{ij}| - \sigma(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{ij}) + \sigma_{0}} \right)^{12} - \left(\frac{\sigma_{0}}{|\mathbf{r}_{ij}| - \sigma(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{ij}) + \sigma_{0}} \right)^{6} \right].$$

$$(1)$$

The range parameter σ of two disclike particles of thickness l and diameter σ_0 is,

$$\sigma(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{ij}) = \sigma_{0} \left(1 - \frac{\chi}{2} \left[\frac{(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{i} + \hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{j})^{2}}{1 + \chi \hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}} + \frac{(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{i} - \hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{j})^{2}}{1 - \chi \hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}} \right] \right)^{-\frac{1}{2}}$$

$$(2)$$

where $\chi = (l^2/\sigma_0^2 - 1)/(l^2/\sigma_0^2 + 1)$, $\hat{\mathbf{u}}_i$ is the director along the principal axis of particle i and \mathbf{r}_{ij} is the connecting vector between the centre of masses of particles i and j.

The strength anisotropy parameter in Eq. (1) is given by

$$\varepsilon(\hat{\mathbf{u}}_i, \hat{\mathbf{u}}_j, \hat{\mathbf{r}}_{ij}) = \varepsilon_0 \left[\varepsilon_1(\hat{\mathbf{u}}_i, \hat{\mathbf{u}}_j) \right]^{\nu} \left[\varepsilon_2(\hat{\mathbf{u}}_i, \hat{\mathbf{u}}_j, \hat{\mathbf{r}}_{ij}) \right]^{\mu}$$
(3)

with ε_0 , $\varepsilon_1(\hat{\mathbf{u}}_i, \hat{\mathbf{u}}_j) = \left[1 - \chi^2(\hat{\mathbf{u}}_i \cdot \hat{\mathbf{u}}_j)^2\right]^{-\frac{1}{2}}$ and μ , ν are adjustable exponents. The $\varepsilon_2(\hat{\mathbf{u}}_i, \hat{\mathbf{u}}_j, \hat{\mathbf{r}}_{ij})$ parameter adjusts the well depth ratio for the edge-to-edge (ε_{ϵ}) to face-to-face (ε_f) configuration of the disc particles [2] by introducing the parameter $\chi' = (\varepsilon_{\epsilon}^{1/\mu} - \varepsilon_f^{1/\mu})/(\varepsilon_{\epsilon}^{1/\mu} + \varepsilon_f^{1/\mu})$, that is,

$$\varepsilon_{2}(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{ij}) = 1 - \frac{\chi'}{2} \left[\frac{(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{i} + \hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{j})^{2}}{1 + \chi' \hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}} + \frac{(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{i} - \hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_{j})^{2}}{1 - \chi' \hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}} \right].$$
(4)

For the interaction between pairs of discs and spheres we also use the Gay-Berne potential of Eq. (1). The $\sigma_{\rm ds}$ parameter depends only on the orientation of disc j, $\hat{\mathbf{u}}_j$, and the normalized vector $\hat{\mathbf{r}}_{ij}$ connecting to the centre-of-mass of sphere i, that is, [3]

$$\sigma_{\rm ds}(\hat{\mathbf{u}}_i, \hat{\mathbf{r}}_{ij}) = \sigma_0^{\rm ds} \left[1 - \chi''(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_i)^2 \right]^{-\frac{1}{2}} \tag{5}$$

where $\sigma_0^{\rm ds} = \frac{1}{2}(\sigma_0 + \sigma_{\rm s})$ and $\chi'' = (l^2 - \sigma_0^2)/(l^2 + \sigma_{\rm s}^2)$. Similarly, the strength anisotropy for pairs of discs and spheres becomes

$$\varepsilon_{\rm rs}(\hat{\mathbf{u}}_j, \hat{\mathbf{r}}_{ij}) = \varepsilon_0 \left[1 - \chi'''(\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{u}}_j)^2 \right]^{\mu} \tag{6}$$

where the disc-sphere well-depth anisotropy is given by $\chi''' = 1 - (\varepsilon_e/\varepsilon_s)^{1/\mu}$. For our calculations we choose a set of parameters from well studied monodispersed system of disc particles [2], that is, $l/\sigma_0 = 0.345$, $\varepsilon_e/\varepsilon_f = 0.2$, $\mu = 2$ and $\nu = 1$. The values of the ratio $\varepsilon_s/\varepsilon_e$ are given and discussed in the main manuscript. In the present study the diameter of the spheres σ_s remains as an adjustable parameter with $\sigma_s^* = \sigma_s/\sigma_0$.

[1] D. Antypov and D. J. Cleaver, J. Chem. Phys. 120, 10307 (2004).

[3] D. J. Cleaver, C. M. Care, M. P. Allen, and M. P. Neal, Phys. Rev. E **54**, 559 (1996).

^[2] O. Cienega-Cacerez, J. A. Moreno-Razo, E. Díaz-Herrera, and E. J. Sambriski, Soft Matter 10, 3171 (2014).