Supporting information

Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: A numerical parametric study

Venoos Amiri Roodan¹, Jenifer Gómez-Pastora², Ioannis H. Karampelas¹, Cristina González-Fernández³, Eugenio Bringas³, Inmaculada Ortiz³, Jeffrey J. Chalmers², Edward P. Furlani¹,4,†, Mark T. Swihart¹

1. Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
2. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 315 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
3. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
4. Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
† Deceased

Table of contents

Fig. S1 Five arbitrary planes at the T-outlet
Fig. S2 MATLAB calculation of the distribution of z-component of magnetic field for five arbitrary planes a) at $z = 0.55$ mm away from the magnet; b) at $z = 0.65$ mm; c) at $z = 1$ mm; d) at $z = 1.35$ mm; e) at $z = 1.45$ mm; and f) $B_{z,max}$ with respect to distance from the magnet
Fig. S3 Changes of volume and diameter of 10% (v/v) ferrofluid for 25 µm depth a) volume b) diameter
Fig. S4 Changes of volume and diameter of 50% (v/v) ferrofluid for 25 µm depth a) volume b) diameter
Fig. S5 Changes of volume and diameter of 10% (v/v) ferrofluid for 30 µm depth a) volume b) diameter
Fig. S6 Changes of volume and diameter of 50% (v/v) ferrofluid for 30 µm depth a) volume b) diameter
Fig. S7 Changes of volume and diameter of 10% (v/v) ferrofluid for 40 µm depth a) volume b) diameter
Fig. S8 Changes of volume and diameter of 50% (v/v) ferrofluid for 40 µm depth a) volume b) diameter
Fig. S9 Droplet diameter after pinch off vs. capillary number (Ca) analysis. a) Ca changes for three channel depths; b-d) droplet diameter vs. Ca for channel depths of b) 25 µm; c) 30 µm; and d) Ca of 40 µm depth for 50% (v/v) under an applied magnetic field
Fig. S1 Five arbitrary planes at the T-outlet
Fig. S2 MATLAB calculation of the distribution of z-component of magnetic field for five arbitrary planes a) at z = 0.55 mm away from the magnet; b) at z = 0.65 mm; c) at z = 1 mm; d) at z = 1.35 mm; e) at z = 1.45 mm; and f) Bz,max with respect to distance
Fig. S3 Changes of volume and diameter of 10% (v/v) ferrofluid for 25 µm depth a) volume b) diameter
Fig. S4 Changes of volume and diameter of 50% (v/v) ferrofluid for 25 µm depth a) volume b) diameter
Fig. S5 Changes of volume and diameter of 10% (v/v) ferrofluid for 30 µm depth a) volume b) diameter
Fig. S6 Changes of volume and diameter of 50% (v/v) ferrofluid for 30 µm depth a) volume b) diameter
Fig. S7 Changes of volume and diameter of 10% (v/v) ferrofluid for 40 µm depth a) volume b) diameter
Fig. S8 Changes of volume and diameter of 50% (v/v) ferrofluid for 40 µm depth a) volume b) diameter
Fig. S9 Droplet diameter after pinch off vs. capillary number (Ca) analysis. a) Ca changes for three channel depths; b-d) droplet diameter vs. Ca for channel depths of b) 25 µm; c) 30 µm; and d) Ca of 40 µm depth for 50% (v/v) under an applied magnetic field