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Figure S1: Dimensionless resistance parameters as a function of the surface separation δ scaled
by the sphere radius a. (top, left) A torque, L = 6πηa3Ω(YAYC − Y 2

B)/YAex, is required to rotate
a force-free sphere with angular velocity, Ω = Ωex, above a solid plane normal to ez; the resistance
coefficient (YAYC−Y 2

B)/YA approaches 4/3 for large surface separations δ � a. (top, right) A sphere
rotating with an angular velocity, Ω = Ωex, will translate with a linear velocity, U = −κaΩey;
the coefficient κ = YB/YA approaches 1/4 as δ → 0, which is four times slower than pure rolling.
(bottom, left) The torque required to rotate a sphere with angular speed Ω about the x or y axis
is larger by a factor, λ = (YAYC − Y 2

B)/YAXC , than that required to rotate the sphere at the same
speed about the z axis. (bottom, right) A force, F = 6πηaF (YAYC − Y 2

B)/YCex, is required to
translate a torque-free sphere with linear velocity, U = Uex; the parameter, µ = YC/YA, represents
the ratio between the resistance coefficients for rotation and translation parallel to the plane.
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Figure S2: Pairwise distributions among the seven design variables—c1, cm−1, dm−1, cm, dm,
cm+1, and dm+1—for “good” designs satisfying L < −0.01 for uphill motion (left) or L > 0.01
for downhill motion (right). We used Latin hypercube sampling (LHS) to generate 100,000 can-
didate designs distributed uniformly on the interval [−1, 1] for each variable. For each candidate,
we simulated the resulting particle motion to evaluate the objective function L(d) with rotation
order m = 6, frequency ω = 0.025, slope α = 0.2 radians, and resistance parameters κ = 0.108
and λ = 1.87. From these random designs, we identified ca. 1000 “good” designs satisfying the
conditions L < −0.01 or L > 0.01, where the objective function is given by equation (35). The
marginal distributions of these designs (plots on the diagonal) and their pairwise correlations (con-
tour plots off the diagonal) reveal strategies for achieving topotaxis. As described the in main text,
we used these “good” designs to perform a principle component analysis (PCA) and reduce the
dimensionality of the design space without excluding those highest performing designs.
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Supplementary Note 1: Data-driven designs with c0 6= 0

In the main text, we explored the seven dimensional design space—denoted D1—formed by the
parameters c1, cm−1, dm−1, cm, dm, cm+1, dm+1; static contributions to the field were neglected,
c0 = 0. Here, we repeat the design process for a slightly different seven dimensional design space—
denoted D2—formed by the parameters c0, c1, cm−1, cm, dm, cm+1, dm+1. Note that we have added
c0 but eliminated dm−1. As the field has rotational symmetry about the z′ axis, rotation of the
field about that axis by any angle is not important; we can therefore set dm−1 = 0.

Figure S3 shows the result of the data-driven design process for the new design space. The
qualitative trends are the same as those of Figure 4. Reducing the dimensionality of the design space
via PCA enables better solutions to be identified more quickly as compared to the full 7-dimensional
space. For uphill motion, the best design identified in D2 was not as good as that identified in D1:
the uphill velocity was 〈Uy〉 = 0.0233ω in Figure S3c as compared to 〈Uy〉 = 0.0252ω in Figure 4c.
Note that the better of these two designs is actually present in both spaces D1 and D2 but was
only discovered during the exploration of D1. By contrast, for downhill motion, improved designs
were identified in D2 as compared to those identified in D1: the downhill velocity increased from
〈Uy〉 = −0.0357ω to 〈Uy〉 = −0.0801ω. Notably, the best designs identified in D2 do not appear to
make use of the static component of the magnetic field. Instead, differences between the designs
identified in spaces D1 and D1 reflect the stochastic nature of the design process.
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Figure S3: (a) Convergence plot showing the decrease in the objective function L(d) with increas-
ing function evaluations during optimization via CMA-ES. Different colors correspond to design
spaces with different numbers of dimensions. For each design space, optimization is initialized from
50 randomly selected designs (light curves); bold curves show the average performance. (b) Two
periodic fields B′(ωt) identified by the data-driven process to drive particle motion uphill (left) and
downhill (right). The uphill field is characterized by design parameters c0 = 0.042, c1 = 0.242,
c5 = 0.999 c6 = −0.078, d6 = −0.017, c7 = 0.876, and d7 = −0.021; the downhill by c0 = 0,
c1 = 0.006, c5 = 0.01 c6 = 0.899, d6 = 0.392, c7 = 0.014 and d7 = 0.025. (c) Numerically computed
particle trajectories in the xy plane over three oscillation cycles using the fields in (b). The drift
velocities are 〈Uy〉 = 0.0233ω and 〈Uy〉 = −0.0801ω for uphill and downhill motion, respectively.
In all plots, the symmetry order is m = 6; the dimensionless frequency is ω = 0.025; the incline
angle is α = 0.2 rad; the hydrodynamic parameters are λ = 1.87 and κ = 0.108.
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Supplementary Note 2: Effects of gravity

If the particle is subject to a constant force F (scaled by mB0/a), the Euler angle dynamics
presented in the main text is augmented as

φ̇ = − cot θ(Bx cosψ +By sinψ)− κ csc θ(Fx cosψ + Fy sinψ) (1)

θ̇ = − cos θ(By cosψ −Bx sinψ)−Bz sin θ + κ(Fx sinψ − Fy cosψ) (2)

ψ̇ = 1
2 ((1 + λ) + (1− λ) cos 2θ) csc θ(Bx cosψ +By sinψ) + κ cot θ(Fx cosψ + Fy sinψ) (3)

The particle velocity in the plane of the substrate is given by

Ux = κ(Bx cos θ −Bz sinψ sin θ) + µFx (4)

Uy = κ(By cos θ +Bz cosψ sin θ) + µFy (5)

where µ = YC/YA = 0.872 for a surface separation of δ = 0.01a. We will assume that there is no
net force normal to the surface such that there is no motion in the z-direction.

In the main text, we consider the contribution of a gravitational force in equation (5) of the
form, Fy = −Fg sinα ≈ −Fgα. This force is negligible when

Fg �
κ

µα
〈By cos θ +Bz cosψ sin θ〉 (6)

Using the model-driven design for the uphill migration velocity—equation (29) of the main text—
this expression can be written more explicitly as

Fg �
κCbb

2ω2

µ
≈ 1.5× 10−3 (7)

where the approximate equality assumes a surface separation of δ = 0.01a and a frequency of
bω = 0.3. Figure S4 shows the computed particle trajectory for the model-driven design for uphill
migration in the presence of a weak gravitational force, Fg = 1.5 × 10−4. Under these condi-
tions, the effects of gravity are due primarily to sedimentation and can be superimposed onto the
time-averaged dynamics to accurately predict particle motion (dashed black curve). Additional
contributions of the force to the orientational dynamics of equations (1)–(3) are negligible.
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Figure S4: Numerically computed particle trajectories in the xy plane over three oscillation
cycles using the model-driven field with m = 4 and b = 40. In contrast to the results of Figure
3a, this particle is also subject to a gravitational force Fg = 1.5 × 10−4 in the −e′z direction.
Here, the dimensionless frequency is ω = 0.005; the incline angle is α = 0.2 rad; the hydrodynamic
parameters are λ = 1.87, κ = 0.108, and µ = 0.873 corresponding to a surface separation δ = 0.01a.
Particle dynamics computed numerically (solid curves) compare favorably with the time-averaged
dynamics (dashed black line) when accounting for sedimentation. The dashed purple line shows
the time-averaged dynamics in the absence of gravity.
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Supplementary Note 3: Calibration of the Magnetic Coils

In experiments, the magnetic field B(t) was generated by a triaxial electromagnet powered by three
time-dependent currents denoted by the vector I(t). Within the linear response regime, a harmonic
current signal, I(t) = Îeiωt, creates a magnetic field, B(t) = B̂eiωt, with complex amplitude

B̂ = M̂(ω) Î (8)

where M̂(ω) is a complex calibration matrix that depends on the frequency of the applied field.
To determine the calibration matrix, we applied a harmonic current signal to each of the three
coils (denoted x, y, and z) and measured the resulting magnetic field with a sensor (Ametes MFS-
3A, purchased from GMW Associates) positioned at the center of coils. From these data, the
components of the calibration matrix were determined by linear regression. We corrected for the
ambient magnetic field (ca. 0.05 mT) by taking measurements with the input currents set to zero.
For low frequencies ω � 10 rad/s, the calibration matrix was real and independent of frequency,
M0 = M̂(ω → 0), with components

M0 =

 4.4± 1.7× 10−4 0.57± 1.5× 10−4 −0.057± 1.4× 10−4

−0.52± 1.5× 10−4 3.9± 1.9× 10−4 −0.072± 1.5× 10−4

−0.093± 1.6× 10−4 0.092± 1.5× 10−4 4.3± 1.9× 10−4

 mT A−1 (9)

where the error-bars correspond to standard errors. In the topotaxis experiments, the desired
time-periodic fields B(t) were generated using the calibrated current signals I(t) = M−10 B(t).
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Figure S5: Components of the magnetic field B(t) during one oscillation cycle of the model-driven
design for uphill topotaxis shown in Figure 3a with frequency ω = 0.76 rad/s. After calibration, the
measured magnetic field (markers) agrees to within 0.17 mT (6%) with the desired magnetic field
(curves). This error is attributed to differences in the position of the sensor between the calibration
and measurement experiments, which were performed on different days.
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Supplementary Note 4: Magnetic Rolling Experiments

To estimate the magnetic moment of ferromagnetic spheres, we quantified their translational
“rolling” motion above a solid planar substrate due to a rotating magnetic field. As illustrated
in Figure S6a, a rotating magnetic field in the xz-plane with magnitude B and frequency ω caused
the particle to rotate about the y-axis and simultaneously translate in x-direction. Figure S6b
shows the measured particle velocity V as a function of the applied frequency. The velocity in-
creases linearly with frequency up to some critical value ω∗, above which it begins to decrease.
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Figure S6: (a) A rotating magnetic field B(t) drives the rotation and translation of a magnetic
Janus particle along a solid wall. (b) Measured particle velocity V as a function of the applied
frequency ω (markers). The particle radius was a = 17 µm, and the field strength B0 = 3.0
mT. Smaller markers denote the velocities of the individual particles; larger markers represent
the median velocity. The solid curve shows the predicted velocity of a ideal ferromagnetic sphere
with magnetic moment m = 1.8× 10−11 A m2. The dashed curve shows the theoretical bound on
hydrodynamic rolling as the surface separation δ approaches zero: V = aω/4.

This observed behavior is captured quantitatively by a model that accounts for the magnetic and
viscous torques acting on the particle and for the hydrodynamic coupling between particle rotation
and translation near the solid substrate. Below the critical frequency, the particle’s magnetic
moment rotates in lock step with the applied field such that the angular velocity of the particle is
equal to that of the field. At low Reynolds numbers, the resulting particle velocity is given by

V = κaω, (10)

where the resistance parameter κ = YA/YB depends on the dimensionless surface separation δ/a.
From the experimental data, the fitted slope of the particle velocity versus applied frequency is
1.29 µm for a = 17 µm. Using these values, eq. (10) implies that the median surface separation is
δ = 0.041a. At the critical frequency, the viscous torque on the force-free particle is equal to the
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maximum magnetic torque such that

6πηa3ω∗
(
YAYC − Y 2

B

YA

)
= mB0, (11)

where the resistance coefficient is (YAYC − Y 2
B)/YA = 2.30 for the estimated surface separation

δ = 0.041a. Using the known viscosity (η = 8.9 × 10−4 Pa s) and field strength (B0 = 3.0 mT),
eq. (11) implies that the median magnetic moment is m ≈ 1.8× 10−11 A m2.
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