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Matthew Macaulay and Pierre Rognon

1 Method Details
Simulated plane shear flows

To measure the viscosity of cohesive granular flows, we used a discrete element method to simulate 104 adhesive grains
subjected to an external constant pressure P, and shear-rate γ̇. The shear cell is pseudo bi-dimensional: grains are all
placed on the x− y plane, but are considered to be cylinders of height d. The width of the shear cell is 100d. Its height H
is approximately 100d; it is let free to contract or dilate to control the normal stress in the system. Shear rate and normal
stress are prescribed using Lees-Edwards periodic boundaries, which act in both the x and y-directions1. The shear rate is
prescribed by moving the top and bottom boundaries in opposite directions at a velocity vb = ±H

2 γ̇. An external normal
stress P0 is prescribed by adjusting the cell height according to a viscous dynamics at any point in time: Ḣ = 1

ηb
(P(t)−P0),

where P(t) is the normal stress measured in the shear cell. The viscous parameter is chosen to be with ηb = 20P0ti/d, where
ti = d

√
ρg/P is the inertial time measuring the typical time for grains to rearrange in the flow. ηb→ ∞ would correspond

to a fixed volume shear. We verified that the chosen value for this parameter did not significantly affect the flow dynamics.
The discrete element method consists in integrating individual grain displacements and rotations according to Newton’s

second law of motion, accounting for all contact forces. With elastic grains of contact stiffness k, the shortest timescale
of the system is tk = (m/k)

1
2 , which represents the time of contact for a binary collision excluding dissipation or adhesion.

Accordingly, Newton’s second laws are discretised in time (using a predictor-corrector scheme) over time steps dt = 1
20 tk,

which are sufficiently small to capture this time scale. After the cell height adjusted according to the predictor step, every
grain position is dilated (or contracted) slightly according to in order to exactly fill the updated cell height: y 7→ y×Lt/Lt−dt .
This removes localised dilation effects near the boundary and provides more homogeneous dilation2,3.

All flows are prepared by initially placing the grains without contact and then applying both the normal stress and the
shear rate until a steady flow is reached. Such steady flows are characterised by a constant (albeit slightly fluctuating)
system height H and internal stresses. All data shown in this paper were measured once a steady flow is established.

We quantify the homogeneity of the shear in steady flows by the following metric4:

∆v̄2
x =

3
2γ̇2H3

∫ H

−H
(v̄x(y)− yγ̇)2dy. (1)

which compares the time average velocity profile v̄x(y) to a linear velocity profile. A perfectly homogeneous flow leads to
∆v̄x = 0 while a perfectly heterogeneous flow comprised of two blocks sliding on top of each other would lead to ∆v̄x = 1.
Most results presented in this paper correspond to flow with ∆v̄x ≤ .15. Some flows led to more heterogenous states,
where a persistent shear band seemingly develops. The development of such shear bands in cohesive granular flows was
previously reported in refs.5–7.

Grain interactions
Grains interact via pairwise contact forces. These forces are a function of the grain overlap δ , which represents an elastic
deflection and is measured as the sum of two grains’ radii minus their centre-to-centre distance r: δ = (di + d j)/2− r.
When in contact (δ > 0), grains interact through the following forces: friction F f , elastic repulsion Fe, viscous dissipation
Fv, and cohesion Fc. The total interaction force ~F splits into tangent n̂‖ and normal n̂⊥ directions:

~F = FT n̂‖+FN n̂⊥; FT = F f ; FN = Fe +Fv +Fc.

The elastic normal repulsion follows a Hookean linear model with a stiffness k: Fe = kδ . The tangential friction between
two particles in contact is modelled by an elastic tangential force capped by a sliding criteria: F f = min( 1

2 kδ ; µpFe). The
viscous dissipation is set using an equivalent coefficient of restitution of e = 1

2 , so that the viscous dissipation coefficient is

α = − ln(e)/(π2 + ln2(e))
1
2 . Correspondingly, the viscous force is Fv = ξ δ̇ with ξ = 2(m

2 k)
1
2 α. All simulations presented in

this paper used a constant grain friction and dissipation of µp = 0.5. The cohesion force between grains is constant Fc = f0.

Adhesion models
Theories of contact mechanics have established a number of contact law for adhesive contact between elastic grains. A
thorough presentation of these models can be found in refs.8–12. We discuss here how some of the differences in contact
models could be taken into account into the viscosity scaling that we proposed here.
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3 COMPARISON OF RHEOLOGICAL MODELS

Our analysis considers Hookean elastic contacts with constant attractive force. The DMT model13, which considers van
der Walls interactions between two contacting spheres14,15, also yields a constant attractive force f0 which basically scales
like the loss in surface energy ∆γ and grain size: f0 ∝ ∆γd. However, the DMT model considers the elastic contact between

spheres described by Hertz’s law, which involves a non-linear spring-like behaviour: Fe ∝ Ed2
(

δ

d

) 3
2
, with E being related

to the Young’s modulus and Poisson’s ratio of the grains. This non-linearity changes the expression for the equilibrium

deflection: w0 ∝
∫ δeq

0 Fe(δ )dδ =
2
5

Ed3(CK)
5
3 , with K = P/E. The corresponding cohesion-energy number is:

W DMT
∝

C
5
6 K

1
3

I
, (2)

which is slightly different from W =CK
1
2 /I obtained for our Hookean contacts. A similar estimate could be performed for

a JKR contact, which also involves Hertz elasticity but includes a deflection dependent adhesion force16–19.
Capillary adhesion is qualitatively different. In the pendular regime, the maximum adhesion force is controlled by the

water surface tension γw and the grain diameter: f0 ∝ γwd 9,20. The difference is that the attractive force has a large range.
They are active until the meniscus breaks, which happens at a distance drup scaling with the grain size: drup ∝ d. This means
that the adhesion energy is not dependent on the grain stiffness. Linearising the attractive force from contact to rupture
provides a first order approximation of the corresponding energy w0 ∝ f0drup ∝ f0d. The corresponding cohesion-energy
number is:

W cap
∝

C
1
2

I
. (3)

This qualitatively differs from grains interacting via contact adhesion, as it is independent from the grain stiffness.

2 Flow Timescales
We present here how the dimensionless numbers I, K, C and W are related to four elementary time scales: (i) the stiffness
time tk = (ρgd/k)1/2 which characterises the duration of a particle collision without dissipation; (ii) the inertial time
ti = d(ρg/P)1/2 which concerns the movement of a grain through on diameter under a pressure force and (iii) the shear
time tγ̇ = γ̇−1 which is the duration of one shear deformation; and (iv) The cohesion timescale tc = d2(ρg/ f0)

1/2 characterise
the time for a particle to move under the force of cohesion.

I, K, C and W can be expressed by, and interpreted as combinations of these time scales. The inertial number is I = ti/tγ̇ ,
the cohesion number is C = (ti/tc)2, the softness number is K = (tk/ti)2, corresponding to the P∗ = K in Roy et al. 21 . The
cohesion energy number is a combination of these that is independent of the inertial time W = tktγ̇/t2

c . This reflects the fact
that it is the ratio of the cohesion energy to the kinetic energy.

3 Comparison of rheological models
Several models have been devised to describe the effects of cohesion on granular rheology. Like in our study, they were
determined empirically, by fitting measured friction for different levels of cohesion C, stiffness K and sometimes other
parameters. We discuss here to what extent these models capture the rheological behaviour we have observed, which we
proposed to model by Eq. (5) in the main text:

µ(I,W ) = µd(I)g(W, I); (4)

g(W, I) = 1+b
W

1+ I1/I
. (5)

The goal of this section is to highlight what this rheology is consistent with, and what it advances in previous formulations.
To facilitate comparison, we recall the two limits of our model corresponding to the cohesive-strength and cohesive-energy
regime:

g(I� I1)≈ 1+bC K
1
2

I1
Cohesive-strength regime; (6)

g(I� I1)≈ 1+bW = 1+bC K
1
2

I Cohesive-energy regime. (7)

To help with model comparison, figure 1 plots our measured function g = µ/µd , and how its slope a = ∂g
∂C decreases with

the inertial number.
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3 COMPARISON OF RHEOLOGICAL MODELS 3.1 Rognon’s model
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Figure 1 Measured enhancement of friction indued by cohesion (same data as in figure 2a of the paper, obtained for a fixed softness
K = 10−3). Main: µ/µd = g as a function of the cohesion strength C (symbols: numerical results; line: linear fit by Eq (5). Inset: slope
a = ∂g

∂C as a function of the inertial number (red line fitted by a = bK
1
2 /(I + I1)).

Given the need for a nomenclature, in the following, we name each model by the first author of paper where they were
first introduced. The model introduced in this paper is referred to as Macaulay’s model.

3.1 Rognon’s model

Rognon’s model22 was derived from plane shear flows and flow down a slope of cohesive grains, using DTM and JKR
adhesion models. In this study, the grain softness was fixed and low (K = 10−5) and the grain coefficient of restitution was
fixed. Measured friction laws were fitted by the following model:

µ = µmin(C)+b(C)I, (8)

where both functions µmin(C) and b(C) are linearly increasing with C. In the limit of I = 0, Rognon’s model is consistent
Macaulay’s cohesive-energy regime. However, it was derived for stiff grains, for which C > 1 implies C >W =CK1/2/I. In
other words, Rognon’s study did not explore the cohesive energy regime. Consistently, Rognon’s model does not predict
the cohesive-energy rheology (Eq. 7) or the shear-induced weakening (decrease of µ with I at high cohesion numbers)
captured in Macaulay’s.

3.2 Roy’s model

Roy’s model21 addresses the combined effect of cohesion C and softness K. Data are captured by the following expression,
which may be seen as a series of first-order corrections for each parameter that affects the friction:

µ = µd(I)
(

1−
(

K
K0

) 1
2
)
(1+aC) (9)

= µd(I)
(

1+aC−
(

K
K0

) 1
2
− a

K
1
2

0

CK
1
2

)
(10)

with constants K0 and a = 1.47. It additionally includes a weakening correction for small inertial numbers and gravity
effects close to a free surface, not included here. Roy’s model for particle softness is based on an earlier work considering
a much higher particle softness K ≤ 0.1. Below K < 5×10−4 they find almost no effect of softness, which demarcates the
stiff regime.

For relatively stiff grains such as those considered in our study, Roy’s model reduces to µ(I,C) ≈ µd(I)(1+ aC). This
is qualitatively consistent with Rognon’s model, and to Macaulay’s cohesive-energy regime provided the softness is fixed.

3



3.3 Berger’s model NOTES AND REFERENCES

However, it does not capture the existence of the cohesive-energy regime, characterised by a coefficient a decreasing with
higher inertial numbers, as shown in figure 1.

3.3 Berger’s model

Berger’s model23 proposes a friction model involving the logarithm of a cohesion-modified inertial number:

µ = µd(I)+
a0C

1−a1 ln(1− Ic)
, Ic =

I

(1+a2C)
1
2
, (11)

with constants ai. It is derived from data obtained with 0≤C ≤ 20, 5×10−3 ≤ I ≤ 0.35 and a fixed softness. The modified
inertial number Ic considers the additive stress effect of pressure and cohesion acting to confine grains. It leads to an
increase in friction characterised by the function a0C

1−a1 ln(1−Ic)
For a given value of C, this model does predict that this term would decrease as the inertial number is increased. This

is qualitatively consistent with Macaulay’s cohesive-strength regime and the shear-induced weakening process. At low
inertial numbers with Ic→ 0, this term reduces to a0C

1+a1Ic
since ln(1− Ic)≈−Ic. This predicts that the inertial number would

also influence the friction enhancement. This does not capture the behaviour observed in Macaulay’s cohesive-strength
regime (Eq. 6), in which the inertial number no longer influences to the role of cohesion C on friction.

3.4 Mandal’s model

The recent work in Mandal et al. 24 highlights the key role of an effective cohesion number, involving the viscous dissipation
coefficient of the grains α: Ce f f =C

3
2 K

1
2 /α

1
4 . They find that the inclusion of dissipation is important for yielding, however,

it does not appear to be important within the flowing region24,25. They demonstrate a sorting of the flow curves µ against
I by the effective cohesion. Qualitatively, these results are consistent with Macaulay’s observation in that a quantity
resembling CK

1
2 drives the effect of cohesion.

Mandal’s friction model consists of using Ce f f in place of C in Beger’s model (11). The observation made is that this
model captures the measured friction at high inertial numbers well. However, it underestimates the friction at low inertial
numbers. This is consistent with the observation that Berger’s model did not capture the transition from a cohesion-energy
to a cohesion-strength regime at low inertial numbers.

3.5 Gu’s model

Like Berger’s model, Gu’s model26 accounts for the effect of cohesion by an additive term to the friction law. Unlike
Mandal’s model, however, the effect of softness K and cohesion C are independent; there is no compound effect between
the two. The model is expressed using the solid fraction φ as:

µ = µd(I)+
a0(

IK
1
2

a1
+1
) 3

2
+

a2φ(φ −a3)C
I

a4C
1
2
+1

. (12)

The ratio in the denominator of the cohesion term I/C1/2 corresponds to the cohesion energy term calculated in Eq. (3).
Gu et al. similarly interpret this term as a ratio of the kinetic to cohesion energy, as for the cohesive-energy regime. Unlike
the models of21,24 and Macaulay’s model, Gu’s model does not include any term involving the combined effect of cohesion
and softness CK

1
2 .

3.6 Concluding remarks
In summary, existing models appear to successfully capture either the cohesive-energy (Berger’s, Mandal’s, Gu’s) or the
cohesive-strength (Rognon’s, Roy’s) regimes. However, none seem to capture both. In identifying the existence of these
two rheological regimes, Macaulay’s model provides a way to understand the origin of their differences and to reconcile
these seemingly different rheologies.
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