Supporting Information

Room-temperature AIE ionic liquid crystals based on diphenylacrylonitrileimidazole salts

Hongyu Guo,^{a,b} Qi Yu,^a Yuzhi Xiong,^{a,b} and Fafu Yang*^{a,c}

a. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China; Email: <u>yangfafu@fjnu.edu.cn</u>.b. Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, P. R. China.c. Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, P. R. China. c. Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, P. R. China. Science, Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, P. R. China.

1. General

All chemical reagents including organic and inorganic compounds were obtained byAladdin Reagent Co., Ltd. and used directly. Pre-coated glass plates were used for TLC detection. Columnchromatography was performed on using silica gel (200-300 mesh). Bruker-ARX 400 instrument was used for measuring the NMR spectra with tetramethylsilane (TMS) as internal standard. Bruker mass spectrometer was applied for MS spectral analysis. UV-Vis spectra were recorded on Varian UV-Vis spectrometer. Edinburgh Instruments FS5 spectrometer was used for examining fluorescence spectra. The fluorescence absolute $\Phi_{\rm F}$ values were investigated on an Edinburgh Instruments FLS920 Fluorescence Spectrometer bearing a 6-inch integrating sphere. Compounds 3 and 4 were prepared according to the published procedure (The influence of multiple alkyl chains on mesomorphic and photophysical properties of diphenylacrylonitrile liquid crystals, Liangbin Lin; Wenwei Qin; Bifeng Cheng; Hongyu Guo; Fafu Yang, Liquid Crystals, 2020,10.1080/02678292.2019.1692931).

2. The synthetic process and characteristic spectra.

2.1 Synthesis of compounds 5 and 6

A mixture of compound 3 or 4 (2.0 mmol), bromochloropropane (0.37 g, 2.0 mmol) and K_2CO_3 (1.4 g, 10 mmol) in 45 mL of dry MeCN was refluxed at 83 °C for 12 h. The reaction was monitored by TLC analysis. After reaction, 40 mL of HCl solution (1M) and 45 mL of CH_2Cl_2 were poured in the reaction system. Then the organic layer was separated and concentrated under reduced pressure. The residue was further purified by column

chromatography with CH_2Cl_2 /hexane (3:7, V/V) as eluent. Compounds 5 and 6 were obtained as yellow solid in yields of 70% and 68%, respectively.

Compound 5: ¹H NMR (400 MHz, CDCl₃) δ : 7.84(d, J = 8.0 Hz, 2H, ArH), 7.57(d, J = 8.0 Hz, 2H, ArH), 7.35(s, 1H, CH=C), 6.95(d, J = 8.0 Hz, 4H, ArH), 4.14(t, J = 6.0 Hz, 2H, ClCH₂), 4.01 (t, J = 6.0 Hz, 2H, OCH₂), 3.76(t, J = 6.0 Hz, 2H, OCH₂),2.24 (m, 2H, OCH₂CH₂), 1.78-1.82(t, 2H, OCH₂CH₂), 1.27-1.46(m, 18H, CH₂), 0.86(t, J = 6.0 Hz, 3H, CH₃).

Compound **6**: ¹H NMR (400 MHz, CDCl₃) δ : 7.62(s, 1H, ArH), 7.57 (d, *J* = 8.0 Hz, 2H, ArH), 7.32(bs, 2H, ArH and CH=C), 6.95 (d, *J* = 8.0 Hz, 2H, ArH), 6.90 (d, *J* = 8.0 Hz, 1H, ArH), 4.16(t, *J* = 6.0 Hz, 2H, ClCH₂), 4.04-4.10(m, 4H, OCH₂), 3.76(t, *J* = 6.0 Hz, 2H, OCH₂), 0.86-2.29 (m, 48H, CH₂ and CH₃).

2.2 Synthesis of compounds 1C-I and 2C-I

The mixture of compound **5** or **6** (0.5 mmol), 1-methylimidazole (0.04 g, 0.5 mmol) and KI (0.17 g, 1 mmol) was refluxed in dry MeCN at 83 °C for 4 h. The reaction was monitored by TLC analysis. After reaction, the solvent was distilled under reduced pressure. The residue was purified by column chromatography with $CH_2Cl_2/MeOH$ (9:1, V/V) as eluent. Compounds **1C-I** and **2C-I** were obtained as yellow viscous substance in yields of 65% and 63%, respectively.

Compound **1C-I**: ¹H NMR (400 MHz, CDCl₃) δ : 9.88 (s, 1H, ArH), 7.80 (d, J = 8.0 Hz, 2H, ArH), 7.51 (d, J = 8.0 Hz, 2H, ArH), 7.47 (s, 1H, ArH), 7.43(s, 1H, ArH), 7.32(s, 1H, CH=C) , 6.91(d, J = 8.0 Hz, 4H, ArH), 4.59(t, J = 6.0 Hz, 2H, NCH₂), 4.09(t, J = 6.0 Hz, 2H, OCH₂), 4.04 (s, 3H, NCH₃) 3.96(t, J = 6.0 Hz, 2H, OCH₂), 1.47-2.48(m, 22H, CH₂), 0.86 (t, J = 6.0 Hz, 3H, CH₃).¹³C NMR (101 MHz, CDCl₃) δ : 160.78, 158.59, 140.29, 137.07, 130.85, 127.64, 127.02, 126.28, 123.67, 122.58, 118.76, 114.99, 114.74, 107.32, 68.19, 64.59, 47.19, 36.91, 31.78, 29.81, 29.63, 29.43, 29.01, 26.00, 22.67, 14.11. MALDI-TOF-MS (C₃₄H₄₆N₃O₂) Calcd. For m/z = 528.359, found: 528.502. Anal. Calcd for C₃₄H₄₆N₃O₂I: C, 62.28; H, 7.07; N, 6.41. Found: C, 62.24; H, 7.01; N, 6.35.

Compound **2C-I**: ¹H NMR (400 MHz, CDCl₃) δ : 10.06(s, 1H, ArH), 7.60(s, 1H,ArH), 7.55(d, J = 8.0 Hz, 2H, ArH), 7.32-7.38(m, 4H,ArH and CH=C), 6.93 (d, J = 8.0 Hz, 2H, ArH), 6.89(d, J = 8.0 Hz, 1H, ArH), 4.61(t, J = 6.0 Hz, 2H,NCH₂), 4.06-4.14(m, 9H, OCH₂ and

CH₃), 0.86-2.52(m, 48H, CH₂ and CH₃). ¹³C NMR (101 MHz, CDCl₃) δ : 158.52, 151.22, 148.91, 140.74, 137.08, 127.94, 127.16, 126.67, 123.99, 123.50, 122.48, 118.91, 115.02, 112.87, 107.48, 69.32, 69.10, 64.38, 47.39, 37.24, 31.91, 29.64,29.36, 29.22, 29.00, 26.07, 26.00, 22.68, 14.10. *MALDI-TOF-MS* (*C*₄₆*H*₇₀*N*₃*O*₃) *Calcd. for m/z* = 712.542. Found: 712.572. Anal. Calcd for C₄₆H₇₀N₃O₃I: C, 65.78; H, 8.40; N, 5.00. Found: C, 65.72; H, 8.44; N, 4.96.

2.3 Synthesis of compounds 1C-T, 2C-T, 1C-P and 2C-P

The mixture of compound **1C-I** or **2C-I** (0.5 mmol) and sodium trifluoroacetate or sodium ptoluenesulfonate (2.5 mmol) was stirred in MeOH/CH₂Cl₂ (2:8) at 65°C for 4h. After reaction, the solvent was evaporated under reduced pressure. The obtained yellow sticky product was washed by distilled water and then was dried under vacuum to afford sticky compounds **1C-T**, **2C-T**, **1C-P** and **2C-P** in yields of 75%, 78%, 80% and 76%, respectively.

Compound **1C-T**: ¹H NMR (400 MHz, CDCl₃) δ : 9.64 (s, 1H, ArH), 7.76 (d, *J* = 8.0 Hz, 2H, ArH), 7.45 (d, *J* = 8.0 Hz, 2H, ArH), 7.38-7.44 (m, 3H, ArH), 6.87(d, *J*= 8.0 Hz, 2H, ArH), 6.83(d, *J* = 8.0 Hz, 2H, ArH), 4.41(bs, 2H, NCH₂), 3.86-3.96(m, 7H, OCH₂ and NCH₃), 1.25-2.33(m, 22H, CH₂), 0.84 (t, *J* = 6.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ : 160.82, 158.63, 140.31, 137.62, 131.55, 130.93, 130.18, 127.72, 126.99, 126.30, 123.53, 122.48, 118.74, 114.83, 114.47, 107.44, 68.19, 64.27, 47.00, 36.12, 31.90, 31.58, 29.58, 29.34, 29.16, 25.99, 22.59, 13.92. MALDI-TOF-MS(C₃₄H₄₆N₃O₂) Calcd. For *m*/*z* = 528.359, Found: 528.583. Anal. Calcd for C₃₆H₄₆N₃O₄F₃: C, 67.37; H, 7.22; N, 6.55. Found: C, 67.32; H, 7.25; N, 6.50.

Compound **2C-T**: ¹H NMR (400 MHz, CDCl₃) δ : 9.79 (s, 1H, ArH), 7.32-7.61(**m**, 7H, ArH), 6.90(m, 3H, ArH), 4.53(bs, 2H, NCH₂), 3.99-4.06(m, 9H, OCH₂ and NCH₃), 2.42(bs, 2H, CH₂), 1.84(bs, 4H, CH₂), 1.27(bs, 36H, CH₂), 0.89(bs, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ : 158.57, 151.19, 149.05, 140.78, 137.67, 130.48, 127.92, 127.10, 126.65, 126.07, 123.93, 123.47, 122.46, 118.83, 114.90, 113.24, 112.82, 107.45, 69.28, 69.06, 64.29, 47.18, 36.56, 31.91, 29.64, 29.36, 29.10, 25.93, 22.67, 14.10. MALDI-TOF-MS (C₄₆H₇₀N₃O₃) Calcd. for m/z = 712.542. Found: 712.376. Anal. Calcd for C₄₈H₇₀N₃O₅F₃: C, 69.79; H, 8.54; N, 5.09. Found: C, 69.73; H, 8.58; N, 5.02.

Compound **1C-P**: ¹H NMR (400 MHz, CDCl₃) δ: 9.73 (s, 1H, ArH), 7.78 (d, *J* = 8.0 Hz,

2H, ArH), 7.44-7.49 (m, 4H, ArH), 7.31(s, 1H, C*H*=C), 7.22 (d, *J*= 8.0 Hz, 2H, ArH), 7.07(d, J = 8.0 Hz, 2H, ArH), 6.87-6.90 (m, 4H, ArH), 4.53(t, J = 8.0 Hz, 2H,NCH₂), 4.04(t, J = 8.0 Hz, 2H, OCH₂), 3.99(s, 3H, NCH₃) 3.94(t, J = 8.0 Hz, 2H, OCH₂), 2.23-2.48(m, 5H, CH₂ and CH₃), 1.21-1.78(m, 20H, CH₂), 0.84(t, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ : 160.84, 158.56, 143.31, 140.61, 137.05, 131.58, 130.98, 130.26, 127.90, 127.12, 126.42, 125.77, 123.58, 122.71, 118.83, 115.11, 114.81, 107.49, 68.33, 64.42, 53.37, 47.49, 37.11, 32.07, 29.60, 29.34, 25.97, 22.67, 14.20. MALDI-TOF-MS (C₃₄H₄₆N₃O₂) Calcd. For *m/z* = 528.359, found: *528.257*. Anal. Calcd for C₄₁H₅₃N₃O₅S: C, 70.35; H, 7.63; N, 6.00. Found: C, 70.32; H, 7.68; N, 5.94.

Compound **2C-P**: ¹H NMR (400 MHz, CDCl₃) δ : 9.40(**s**, **1H**, **ArH**), 7.74 (bs, **2H**, **ArH**), 7.61(**s**, **1H**, **ArH**), 7.47(bs, **2H**, **ArH**), 7.29 (bs, 4H, CH=C and ArH), 7.12(bs, **2H**, **ArH**), 6.83(bs, **3H**, **ArH**), 4.38(**bs**, **2H**, **NCH**₂), 3.84-4.12(**m**, **9H**, **OCH**₂ and NCH₃), 2.28(**bs**, **5H**, **CH**₂ and CH₃), 1.84(**bs**, **4H**, **CH**₂), 1.28(**bs**, **36H**, **CH**₂), 0.89(**t**, **6H**, **CH**₃). ¹³C NMR (101 MHz, CDCl₃) δ : 158.66, 151.15, 148.96, 143.24, 140.66, 139.75, 137.54, 128.83, 127.77, 127.05, 126.69, 125.81, 123.97, 123.47, 122.33, 118.83, 114.94, 112.93, 112.77, 107.52, 69.26, 68.96, 64.43, 53.47, 47.01, 36.40, 31.94, 29.67, 29.46, 29.39, 29.17, 26.10, 22.70, 21.27, 14.13. MALDI-TOF-MS (C₄₆H₇₀N₃O₃) Calcd. for m/z = 712.542. Found: 712.430. Anal. Calcd for C₅₃H₇₇N₃O₆S: C, 71.99; H, 8.78; N, 4.75. Found: C, 71.94; H, 8.76; N, 4.70.

Figure S1. The ¹H NMR spectrum of compound **5**

Figure S2. The ¹H NMR spectrum of compound 6

Figure S3. The ¹H NMR spectrum of compound **1C-I**

Figure S4. The ¹³C NMR spectrum of compound **1C-I**

Figure S5. The MALDI-TOF-MS spectrum of compound 1C-I

Figure S6. The ¹H NMR spectrum of compound **2C-I**

Figure S8. The MALDI-TOF-MS spectrum of compound 2C-I

Figure S10. The ¹³C NMR spectrum of compound 1C-T

Figure S11. The MALDI-TOF-MS spectrum of compound **1C-T**

Figure S12. The ¹H NMR spectrum of compound **2C-T**

Figure S14. The MALDI-TOF-MS spectrum of compound 2C-T

Figure S16. The ¹³C NMR spectrum of compound 1C-P

Figure S17. The MALDI-TOF-MS spectrum of compound 1C-P

Figure S18. The ¹H NMR spectrum of compound **2C-P**

Figure S19. The ¹³C NMR spectrum of compound 2C-P

Figure S20. The MALDI-TOF-MS spectrum of compound 2C-P

Figure S21 The XRD pattern of 1C-I

Figure S22 The XRD pattern of 1C-T

Figure S23 The XRD pattern of 1C-P

Figure S24 The XRD pattern of 2C-I

Figure S25 The XRD pattern of 2C-T

Figure S26 The XRD pattern of 2C-P

Figure S27 The UV-vis absorption spectra of 1C-I, 1C-T, 1C-P, 2C-I, 2C-T and 2C-P $(1.0 \times 10^{-5} \text{ M in THF solution, each})$

Figure S28 Fluorescence emission spectra of **1C-I** in THF-H₂O solution (1×10^{-5} M, $\lambda_{ex} = 350$ nm). Inset: Fluorescence photos of **1C-I** at 0% and 95% H₂O fractions.

Figure S29 Fluorescence emission spectra of **1C-T** in THF-H₂O solution (1×10^{-5} M, $\lambda_{ex} = 350$ nm). Inset: Fluorescence photos of **1C-T** at 0% and 95% H₂O fractions.

Figure S30 Fluorescence emission spectra of **1C-P** in THF-H₂O solution (1×10^{-5} M, $\lambda_{ex} = 350$ nm). Inset: Fluorescence photos of **1C-P** at 0% and 95% H₂O fractions.

Figure S31 Fluorescence emission spectra of **2C-I** in THF-H₂O solution (1×10⁻⁵ M, λ_{ex} = 350 nm). Inset: Fluorescence photos of **1C-I** at 0% and 95% H₂O fractions.

Figure S32 Fluorescence emission spectra of **2C-T** in THF-H₂O solution (1×10⁻⁵ M, $\lambda_{ex} = 350$ nm). Inset: Fluorescence photos of **1C-T** at 0% and 95% H₂O fractions.

Figure S33 Fluorescence emission spectra of **2C-P** in THF-H₂O solution (1×10⁻⁵ M, λ_{ex} = 350 nm). Inset: Fluorescence photos of **1C-P** at 0% and 95% H₂O fractions.

Figure S34 Fluorescence spectra of 1C-I, 1C-T, 1C-P, 2C-I, 2C-T and 2C-P in solid films ($\lambda_{ex} = 350 \text{ nm}$).

Figure S35 CVs of 1C-I, 1C-T and 1C-P (1 mM) in 5% ethanol (at a scan rate of 50 mV s^{-1})

Figure S36 CVs of 2C-I, 2C-T and 2C-P (1 mM) in 5% ethanol (at a scan rate of 50 mV s^{-1})

Figure S37 CVs of 1C-I (1 mM) in 5% ethanol at different scan rates

Figure S38 CVs of 1C-T (1 mM) in 5% ethanol at different scan rates

Figure S39 CVs of 1C-P (1 mM) in 5% ethanol at different scan rates

Figure S40 CVs of 2C-I (1 mM) in 5% ethanol at different scan rates

Figure S41 CVs of 2C-T (1 mM) in 5% ethanol at different scan rates

Figure S42 CVs of 2C-P (1 mM) in 5% ethanol at different scan rates

sample	Phase transition ^[a]	Heating scan	Cooling
		Т(<i>ДН</i>)	scan
			$T(\Delta H)$
1C-I	Cr-SmA (SmA-Cr)	41.0(14.8)	146.6(4.4)
	SmA-Iso(Iso-SmA)	41.5(15.4)	135.6(4.1)
1C-T	Cr-SmA (SmA-Cr)	50.8(13.9)	162.2(3.6)
	SmA-Iso(Iso-SmA)	50.6(12.7)	160.4(4.8)
1C-P	Cr-SmA (SmA-Cr)	39.8(17.2)	147.2(4.8)
	SmA-Iso(Iso-SmA)	37.0(15.8)	139.2(4.0)
2C-I	$Cr-Col_h (Col_h-Cr)$	34.6(19.6)	163.1(2.8)
	Col _h -Iso(Iso-Col _h)	19.8(18.2)	147.3(2.1)
2C-T	Cr-Col _h (Col _h -Cr)	47.5(17.4)	205.6(2.6)
	Col _h -Iso(Iso-Col _h)	25.6(16.3)	195.4(2.4)
2C-P	Cr-Col _h (Col _h -Cr)	29.0(17.2)	181.6(3.4)
	Col _h -Iso(Iso-Col _h)	16.1(16.9)	175.1(2.9)

[a] Cr = crystalline, SmA = SmA mesophase,

 Col_h = hexagonal columnar mesophase, Iso = isotropic

Figure S43 Fluorescence emission spectra of 1C-T in THF-petroleum ether solution (1×10^{-5} M, $\lambda_{ex} = 350$ nm).