Supporting information

to

Not just a fluidifying effect: omega-3 phospholipids induce formation of non-lamellar structures in biomembranes

Augusta de Santis,^{a,b} Giuseppe Vitiello,^{b,c} Marie-Sousai Appavou,^d Ernesto Scoppola,^e Giovanna Fragneto,^f Lester C. Barnsley,^{d,g} Luke A. Clifton,^h Maria Francesca Ottaviani,ⁱ Luigi Paduano,^{a,b} Irene Russo Krauss,^{*,a,b} Gerardino D'Errico^{*,a,b}

^a Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.

^bCSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy.

^c Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy.

^d Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany

^e Max Planck Institut für Kolloid und Grenzflächenforschung, Potsdam, Germany

^fInstitut Laue-Langevin (ILL) Grenoble, France

^gCurrent address Australian Synchrotron, ANSTO, Clayton, Australia

^hISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom

ⁱ Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy

* To whom correspondence should be addressed.

Irene Russo Krauss, Tel: +39 081674227; Email: irene.russokrauss@unina.it,

Gerardino D'Errico, Tel: +39 081674245; Email: gderrico@unina.it

Table S1 Scattering Length Densities (SLDs) and Molecular Volumes (V) used as input values forthe Neutron Reflectivity fitting procedure.

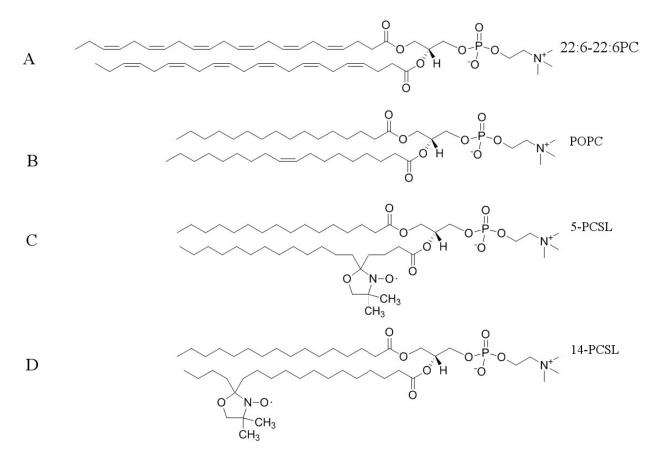

Molecule	Chemical Formula	SLD [10 ⁻⁶ Å ⁻²]	<i>V</i> [Å ³]
Heavy Water	D ₂ O	6.3752	30.0428
Light Water	H ₂ O	-0.5594	29.9757
POPC (Tail)	$C_{32}H_{64}$	-0.2899	919.614
POPC (Headgroup)	$C_{10}H_{18}PO_8N$	1.8652	322.100
22:6-22:6PC (Tail)	$C_{42}H_{62}$	0.6543	722.940
22:6-22:6PC (Headgroup)	$C_{10}H_{18}PO_8N$	1.8652	322.100
Silicon	Si	2.0754	20.000
Silicon Oxide	SiO ₂	3.2698	48.200

Table S2 Correlation time τ , order parameter *S* and coupling constant $\langle A \rangle$ for 5- and 14-PCSL as derived from EPR spectra simulation. Errors are within 1%.

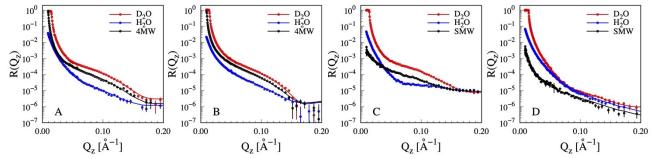
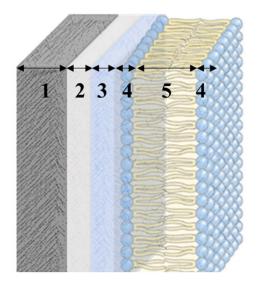
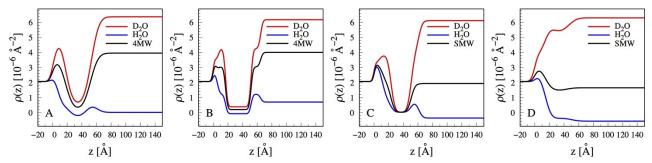
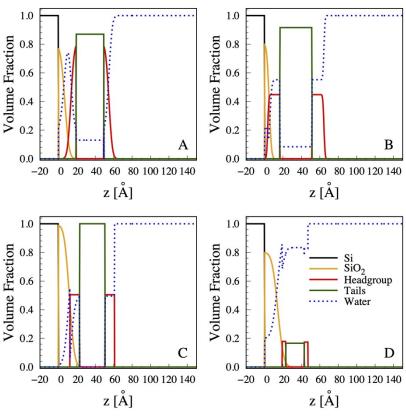

	$ au(\mathrm{ns})$		S		<a>(G)	
X _{22:6-22:6PC}	5-PCSL	14-PCSL	5-PCSL	14-PCSL	5-PCSL	14-PCSL
0	8.4	1.39	0.42	0.15	14.5	14.17
0.2	7.44	1.22	0.42	0.15	14.43	14.16
0.4	7.34	1.13	0.418	0.15	14.43	14.15
0.5	7.25	0.75	0.415	0.145	14.43	14.41
0.6	6.23	0.38	0.4	0.14	14.47	14.55
0.8	5.56	0.37	0.403	0.13	14.48	14.55
1.0	5.45	0.21	0.403	0.105	14.49	14.67

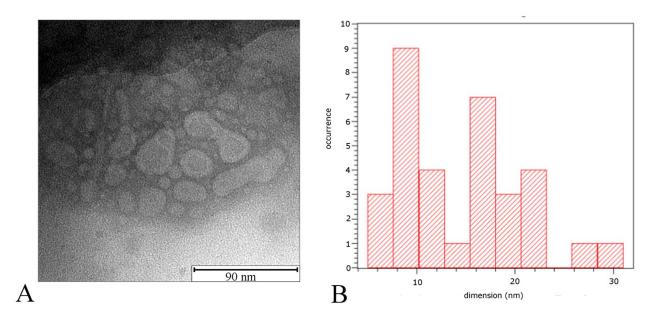
Table S3 Correlation time τ , order parameter *S* and coupling constant $\langle A \rangle$ as derived from EPR spectra simulation for different spin labels and two different POPC/22:6-22:6PC compositions. Errors are within 1%.

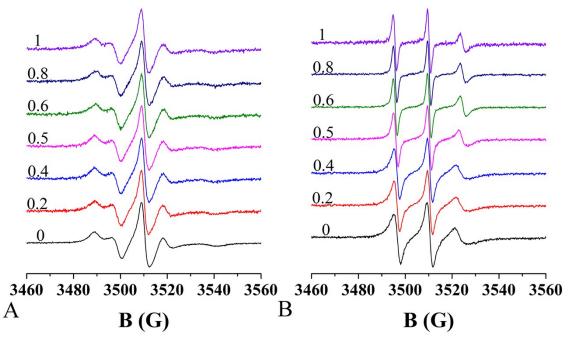
	au(ns)			S		<a>(G)	
X _{22:6-22:6} PC	0.2	0.8	0.2	0.8	0.2	0.8	
5-PCSL	7.44	5.56	0.42	0.403	14.43	14.49	
7-PCSL	4.2	3.1	0.41	0.39	14.43	14.3	
10-PCSL	2.65	1.7	0.33	0.29	14.23	14.23	
14-PCSL	1.22	0.37	0.15	0.13	14.16	14.55	

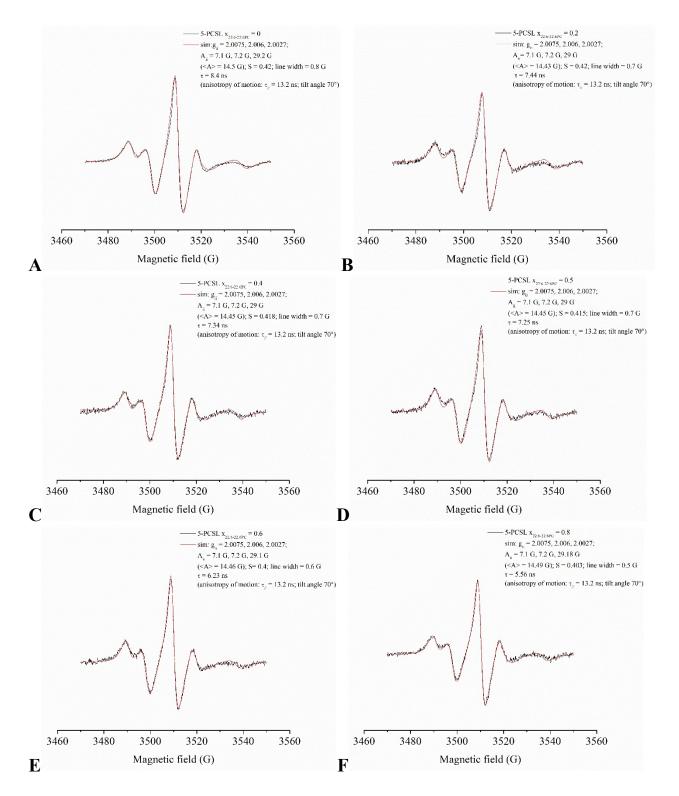
Fig. S1 Chemical structure of the phospholipid employed in the study: 1,2-didocosahexaenoyl-*sn*-glycero-3-phosphocholine (22:6-22:6PC) (A), 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC) (B), 5-PCSL (C) and 14-PCSL (D).

Fig. S2 Experimental data and best fitting curves in D₂O (red), H₂O (blue) and either 4MW (black in panel A and B) or SMW (black in panel C and D) for lipid systems: A) POPC, B) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.2$, C) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.4$, D) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.8$ respectively.


Fig. S3 Schematic representation of the model used for fitting of NR profiles with all chemical components explicitly shown: 1) Si block; 2) SiO_2 layer; 3) water, 4) headgroups, 5) tails of the lipids forming the bilayer.


Fig. S4 *SLD* profiles corresponding to best fit of Neutron Reflectivity data in D₂O (red), H₂O (blue) and either 4MW (black in panel A and B) or SMW (black in panel C and D) for lipid systems: A) POPC, B) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.2$, C) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.4$, D) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.8$, respectively.


Fig. S5 Deconvoluted volume fraction distribution profiles for Silicon (black), SiO₂ (orange), lipid headgroup (red), lipid tails (green) and water (dashed blue line) for lipid systems: A) POPC, B POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.2$, C) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.4$ and D) POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.8$, respectively.

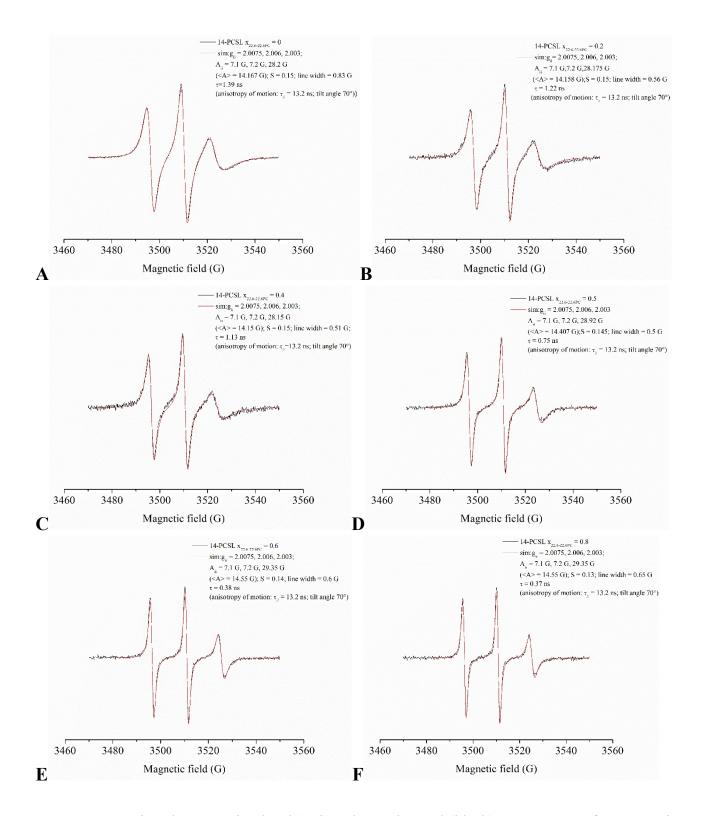

Fig. S6 Cryo-TEM micrograph of POPC/22:6-22:6PC $x_{22:6-22:6PC} = 0.8$ (A) and particle diameter distribution (B).

Fig. S7 EPR spectra of 5-PCSL (A) and 14-PCSL (B), in POPC/22:6-22:6PC systems with $x_{22:6-22:6PC}$ ranging from 0 to 1.

Fig. S8 Comparison between simulated (red) and experimental (black) EPR spectra of 5-PCSL in POPC/22:6-22:6PC systems with $x_{22:6-22:6PC}$ ranging from 0 to 0.8.

Fig. S9 Comparison between simulated (red) and experimental (black) EPR spectra of 14-PCSL in POPC/22:6-22:6PC systems with $x_{22:6-22:6PC}$ ranging from 0 to 0.8.