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1 Model of Steric Scattering

Herein we develop a steric model of a rod-like swimmer (e.g. bacterium) that aligns with a surface and
subsequently scatters from it. Based on observed data, these geometric relationships are sufficient to
describe the interaction and the resulting relationship between cellular motion with respect to an oriented
surface, specifically predicting the relationship between the impact parameter b and the mean scattering
angle 〈θ〉, as well as the duration of interaction (at constant swimming speed) and the angle of exit, β.
Please see the main text for model assumptions.

1.1 Geometric Constraints

As a matter of temporary convenience, we assume that the red point in Fig. 1 is the origin of a Cartesian
coordinate system. The motion of each of the points P1 and P2 are parametrically described by (x1(t), y1(t))
and (x2(t), y2(t)), respectively, thus all possible dynamics are captured by these four dependent variables.
First, note that we are treating the cell as a line-object propelled on-axis from the rear. We assume that
the length of the cell L does not change, mandating that

(x2 − x1)2 + (y2 − y1)2 = L2 (1)

and we assume (for now) that the point of contact P2 is always in contact, sliding along the surface, until
such time as the bacterium leaves the surface, hence

y2 = x2 tan(θ). (2)

The length L is the distance between the leading tip of the cell and the effective point of propulsion, a
little longer than the cell body, we use L = 3.75µm throughout this work.

1.2 Drag-limited Dynamics

We first build up a simpler model of a swimming cell scattering from a flat surface oriented by an angle θ
with respect to the horizontal (see Fig. 1), and then extend this model to account for movement along a
curved (in this case circular) surface of radius R.

Swimming bacteria exist at low Reynolds number (∼ 10−5 − 10−4 ) where viscous drag limits movement
of the points P1 and P2, and hence the velocities of points P1 and P2 are proportional to the net force on
those points with a fixed mobility σ for each point. The propulsion force F , independent of any state of
motion can be decomposed into a component that is parallel to the scattering surface F‖ and a component
normal to the surface F⊥, such that given the current angle α,

F⊥ = F sin(α) (3)
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Figure 1: Relationships between bacterial orientation (α), surface orientation (θ), cell length (L), and
propulsion force (F ), for a cell orienting to a flat inclined surface. Note that for visual clarity, we draw the
cell as a rod-shaped pusher without flagella and not to accurate proportions.

and
F‖ = F cos(α). (4)

We approach the equations of motion as a problem of finding (xi, yi) as functions of α(t) and its derivatives.
The force parallel to the surface translates the point P2 according to

ẋ2 = Fσ cos(α) cos(θ) (5)

ẏ2 = Fσ cos(α) sin(θ) (6)

The distance x2 − x1 is also defined geometrically by

x2 − x1 = L cos (θ − α) (7)

and hence its time derivative is
ẋ2 − ẋ1 = α̇L sin(θ − α) (8)

such that
ẋ1 = ẋ2 − α̇L sin(θ − α) = Fσ cos(α) cos(θ)− α̇L sin(θ − α) (9)

Looking back at the constraint for L and taking the time derivative

(x2 − x1)2 + (y2 − y1)2 = L2 → (x2 − x1)(ẋ2 − ẋ1) + (y2 − y1)(ẏ2 − ẏ1) = 0 (10)

Then using our results above

α̇L sin(θ − α) +
y2 − y1
x2 − x1

(ẏ2 − ẏ1) = 0 (11)

and with
y2 − y1
x2 − x1

= tan(θ − α) (12)

this simplifies to
α̇L cos(θ − α) + ẏ2 − ẏ1 = 0 → ẏ1 = ẏ2 + α̇L cos(θ − α) (13)

and finally
ẏ1 = Fσ cos(α) sin(θ) + α̇L cos(θ − α) (14)
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Then the projection of the perpendicular force F⊥ onto the coordinate perpendicular to the axis of the cell
is what causes the cell body to rotate with respect to the surface, and thus

FR = F⊥ sin
(π

2
− α

)
= F sin(α) cos(α) (15)

Finally, rotation of the cell is

α̇ =
FRσ

L
= −Fσ

L
sin(α) cos(α). (16)

We note that the natural length scale is L (as it has nothing to do with R) and the natural time scale is
L/Fσ, such that the equations of motion can be non-dimensionalized and written

α̇ = − sin(α) cos(α) (17)

and then
ẋ2 = cos(α) cos(θ) (18)

ẏ2 = cos(α) sin(θ) (19)

ẋ1 = cos(α) cos(θ)− α̇ sin(θ − α) (20)

ẏ1 = cos(α) sin(θ) + α̇ cos(θ − α) (21)

Finally, the differential equation for α with initial condition α(0) = αo is solved by

α(t) = −1

2
tan−1

[
2e−t tan(αo)

1 + (e−t tan(αo))2
,

1− (e−t tan(αo))
2

1 + (e−t tan(αo))2

]
(22)

where the effect of the initial condition is to shift the time axis by to = − ln(tan(αo)). For long times or
small αo this can be approximated simply as

α(t) ' αoe−t. (23)

This was the case for a rod-like object orienting to a flat surface tilted by an angle θ.

1.3 Contact Friction

To determine the potential role of friction, we note that if the parallel force exceeds the friction force then
the point of contact will move, this can be stated as

F‖ ≥ µF⊥ (24)

where µ is the frictional coefficient. This leads to a critical impact angle

αc = tan−1
(

1

µ

)
. (25)

This is a condition for the balance between frictional and sliding forces – our data frequently show cells
impacting the steric object essentially head-on, with subsequent sliding along the surface, indicating that
the friction µ� 1, supporting the model assumption that the motion is drag-limited.
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Figure 2: Bacterial orientation (α) with respect to a flat inclined surface as a function of time (t) in
dimensionless units for (left to right) αo = π/6, π/4, 0.9π/2, 0.999π/2.

1.4 Interactions with a Curved Surface

Assuming that viscous drag is the primary constraint on motion, we assume that all velocities are propor-
tional to net force with a fixed mobility σ. The propulsion force F , independent of any state of motion can
be decomposed into a component that is parallel to the scattering surface F‖ and a component normal to
the surface F⊥, such that given the current angle α,

F⊥ = F sin(α) (26)

and
F‖ = F cos(α). (27)

For simplicity we assume that the circle’s center is the coordinate origin, and hence

x2 = −R cos(φ) (28)

y2 = R sin(φ) (29)

and thus
ẋ2 = φ̇R sin(φ) (30)

ẏ2 = φ̇R cos(φ) (31)

Using the parallel force we can also write

ẏ2 = F‖σ cos(φ) = Fσ cos(α) cos(φ) (32)

ẋ2 = F‖σ sin(φ) = Fσ cos(α) sin(φ) (33)

Both of these equations dictate that

φ̇ =
Fσ

R
cos(α) (34)

which, using the natural length scale L and natural time scale L/Fσ, gives

φ̇ = ρ cos(α) (35)
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Figure 3: Relationships between the various forces and geometrical parameters of the circular model,
including bacterial orientation (α), surface orientation (φ), cell length (L), and propulsion force (F ).

with ρ = L/R, and the initial condition is related to the impact parameter by

φo = sin−1
(
b

R

)
(36)

and likewise the initial value of α is
αo =

π

2
− φo (37)

because we assume the cell impacts in a flat orientation (i.e. y1 = y2). Then the rate change of α due to
torque is

α̇T = −FRσ
L

(38)

where
FR = F⊥ sin

(π
2
− α

)
= F⊥ cos(α) = F cos(α) sin(α) (39)

and the rate change of α due to the surface curvature is

α̇C = −φ̇ (40)

then

α̇ = α̇T + α̇C =
Fσ

L
cos(α) sin(α)− Fσ

R
cos(α) (41)

and upon non-dimensionalization

α̇ = − cos(α) sin(α)− ρ cos(α) = − cos(α) (sin(α) + ρ) (42)

This model predicts that if the cell is perpendicular to the surface (α = π/2) then α̇ = 0, same as the flat
surface. However, it also predicts that there is a non-zero critical angle

αc = − sin−1 (ρ) → ρ < 1 (43)

that results in a stable orientation with respect to the surface, however, the fact that that angle is negative
means that this only occurs for cells on the ‘inside’ (i.e. negative curvature), which may be part of the
consistent orientation of motile Bacillus subtilis cells observed on the inside curvature of a circular hole1.

1E. Lushi, H. Wioland, R.E. Goldstein; Fluid flows created by swimming bacteria drive self-organization in confined
suspensions (2014). PNAS 111, 9733 - 9738.
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Figure 4: Relationship between impact parameter b/R and the output angle θ for values of ρ indicated.

For the moment let us make analytic headway by assuming small αo, and thus the differential equation
becomes

α̇ ' −α− ρ → α = e−t (αo + ρ)− ρ, (44)

noting that the flat surface case (earlier) corresponds to ρ → 0. The assumption of the model is that the
bacterium leaves the surface when α = 0, thus the time when that happens is

tc = ln

(
αo
ρ

+ 1

)
(45)

and the angle φ at which it leaves is determined by

φ̇ = ρ cos(α) → φc = C + ρ

∫ tc

0
cos(α)dt ' C + ρ

∫ tc

0

[
1− α2

2

]
dt (46)

where C is a constant such that φ(0) = φo. Even using the linearized model to determine α(t), this integral
has a complicated solution, however approximating cosine by its first two Taylor series terms we can find

φc =
π

2
− ρα

2
o

4
+ αo

(
1− ρ

αo
ln

(
αo
ρ

+ 1

))(
ρ2

2
− 1

)
(47)

Then finally, the measured exit angle is given by

θ =
π

2
− φc = ρ

α2
o

4
− αo

(
1− ρ

αo
ln

(
αo
ρ

+ 1

))(
ρ2

2
− 1

)
(48)

with αo = cos−1
(
b
R

)
. Similarly, the limit when ρ → 0 gives the initial condition θ = αo, consistent with

the flat-surface model. The models overlaid with data in the main text and SI were calculated using
this differential equation, but were solved exactly (numerically) (as opposed to applying the small αo
approximation).

6



1.5 Interaction Time

An interaction with a pillar of radius R was computationally triggered when a bacterium came within R+δ
of the pillar center, where δ = 2.2µm is the radial zone around the pillar inside of which we measured
interactions. Thus for a given value of b, the initial straight line path from entry into the interaction zone
until contact with the pillar has a length

s1 = R

√(1 +
δ

R

)2

−
(
b

R

)2

−

√
1−

(
b

R

)2
 (49)

and applying the average swim speed 〈v〉, a transit time of

t1 =
s1
〈v〉

. (50)

Likewise, after the cell has slide around the pillar and rotated to be tangent with the pillar surface, the
length from that point to exit of the interaction zone is

s3 = R

√(
1 +

δ

R

)2

− 1 (51)

and a transit time of
t3 =

s3
〈v〉

(52)

The time spent sliding and rotating around the pillar can be found exactly from the differential equation

α̇ = − cos(α)(sin(α) + ρ) (53)

which can be integrated directly for the time at which certain values of α are achieved

t+ C = −
∫

dα

cos(α)(sin(α) + ρ)
=

ln(sin(α) + 1)

2− 2ρ
+

ln(sin(α)− 1)

2 + 2ρ
+

ln(sin(α) + ρ)

(ρ+ 1)(ρ− 1)
(54)

where C is an unimportant constant. The time between contact and tangency is given by

t2 =
L

〈v〉
[
t|α=0 − t|α=αo

]
(55)

where we have now accounted for the natural timescale, and this simplifies to

t2 = − L

〈v〉

 ln(sin(αo) + 1)

2(1− ρ)
+

ln (|sin(αo)− 1|)
2(1 + ρ)

+
ln
(
sin(αo)

ρ + 1
)

(ρ− 1)(ρ+ 1)

 (56)

Then the total interaction time is
tint = t1 + t2 + t3 = tf − ti. (57)

In our data processing, we subtracted a constant length (of 1µm) from s1 to account for the offset between
the position of the tip which makes contact with the pillar and the position of the cell centroid from image
processing, that offset is applied consistently to all data processing and figures.

SI Figure 7, shows the measured data overlaid with the model predictions. There is a notable degra-
dation of signal for increasing R due to two distinct effects. First, as discussed in sect. 6 below, the rate at
which data can be collected (and hence to total amount of data collected) decreases rapidly with increasing
R. Second, we employed the average speed in our model to set the natural time scale which relates linearly
to the interaction time. All else being equal, populations of cells exhibit a distribution of speeds, and thus
we expect a distribution of interaction times. Indeed, at least some part of the variance in interaction times
is due to variations in the swim speed of individual cells. Larger pillars have longer interactions times, and
thus variability in interaction times due to speed increases with pillar radius.
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2 Predictions for Control Data

As a test for our entire image analysis and data pipeline, we imaged cells swimming through open regions of
our device, that is, devoid of any steric obstruction except the upper and lower surfaces. We created ficti-
tious interaction by zones by defining a typical (fictitious) pillar dimension (R = 5.8µm) and corresponding
interaction zone of width δ = 2.2µm. As bacteria swam through the interaction zone, we processed their
trajectories in precisely the same way as we processed actual steric interactions. We constructed the same
plots of: dimensionless impact parameter (b/R) vs. scattering angle (θ), b/R vs. exit angle (φ), and b/R
vs. interaction time, and we calculated the expected mean values of those relationships. The calculations
below assume that the persistence length of the isotropic persistent random walk of the cellular trajectories
is much longer than R+ δ.

In particular, if diffusion of a trajectory across the interaction zone was isotropic, then the entry angle
(of 0) should, on average, be zero upon exit, regardless of b and hence

〈θ〉 ( bR) = 0. (58)

Similarly, if diffusion is isotropic the point of entry into the interaction zone, specified by b, has the same
mean y-axis (y = b) value at the point of exit, giving the exit angle of

〈β〉 = sin−1

(
b/R

1 + δ
R

)
(59)

Finally, the interaction time, that is, the time from entry to exit, will be dominated by approximately
straight trajectories that exit, on average, at the same y = b value at both points. The time to execute
that trajectory is

tint = 2
R

〈v〉

√(
1 +

δ

R

)2

−
(
b

R

)2

. (60)

The data and overlaid control models are shown in Fig. 14.

3 Measured Chiral Symmetry

Given the mid-plane reflection symmetry of the device (in Z) we expected the CW- and CCW-rotator
distributions (including counter-rotators) to be approximately symmetric when mirrored across the b = 0
and θ = 0 lines. We tested this by applying the appropriate symmetry operations to the data and then
compared the mean scattering angles of each lobe for 0 ≤ |b/R| ≤ 1. For each pillar radius the mean
scattering angles between the two lobes were symmetric, modulo point-to-point variations. As pillar radius
increased, there was a small chiral asymmetry between the two lobes (SI Fig. 15). Through initial, iterative
improvement of the fabrication process we observed that decreasing the systematic tapering of pillars –
resulting from photolithography – reduced these chiral asymmetries. Thus the observed asymmetry likely
arises from small, systematic pillar tapering (≤ 4%) that asymmetrically affects chiral coupling at the
upper and lower surfaces where the difference in pillar radius is greatest.

4 MLE Fitting

In order to extract parameters that both describe the trends of the scattering process and to compare with
the predictions of our model, we applied Maximum-likelihood estimation to determine parameter values
and 95% confidence intervals. For each bin in b, we started with a von Mises distribution modified to
include a constant offset that accounts for the uniform scattering angle that corresponds to non-directional
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‘tumble-collisions’ in our measured data

ρ(θ; 〈θ〉 , σ, c) =
c

1 + 2πc

1 +
e

cos(θ−〈θ〉)
σ2

2πcI0(σ−2)

 (61)

where θ is the measured scattering angle, σ is the width of the distribution in radians (analogous to the
standard deviation of a Gaussian), 〈θ〉 is the mean scattering angle, c is the offset parameter, and I0 is the
modified Bessel function of the first kind. The log-likelihood function is then

ln(L(〈θ〉 , σ, c)) =
N∑
i=1

ln(ρ(θi; 〈θ〉 , σ, c)) (62)

where the index i spans the measured values of θ. This simplifies to

ln(L) = N ln

(
c

1 + 2πc

)
+

N∑
i=1

ln

1 +
e

cos(θi−〈θ〉)
σ2

2πcI0(σ−2)

 (63)

where N is the total number of data points and the fraction of tumble-collisions is

ftumb =
2πc

1 + 2πc
(64)

We numerically sampled the log-likelihood function over reasonable ranges of all three parameters, and
found the mode values for the parameters with 95% confidence intervals specified from the respective
marginal distributions. An example of this data processing routine is shown SI Fig. 9.

5 Device Fabrication

Bacterial scattering events were measured in atypical microfluidic devices composed of a silicon wafer
patterned with photoresist, and mechanically compressed against a thin layer of PDMS that was bonded
to a glass slide. The top of the device consisted of a 5 cm silicon wafer (University Wafer) onto which we
spun a 0.5µm base layer of SU-8 2000.5 negative photoresist (Kayaku Advanced Materials Inc.). That
layer was first soft baked at 95C for 1 minute, exposed at an energy density of 60mJ/cm2, and baked at
95C for another minute to cure the layer. This base layer increases adhesion of the pillars to the surface
and improves feature resolution. Onto this existing layer of cured photoresist, we spun a ∼ 15µm layer
of SU-8 2015 negative photoresist, and then soft baked it at 95C for three minutes. This thicker layer
of photoresist was exposed with a quartz chromium mask containing the flow layout and pillared regions
within the device, using a Suss MJB4 mask aligner. ‘T-topping’ (i.e. pillar taper) was minimized by
filtering wavelengths below 360nm using a Hoya L-37 longpass filter (Hoya Optics Inc.) with an exposure
energy density of 240mJ/cm2. The photoresist was developed by mildly agitating the silicon wafer in
SU-8 developer for 3 minutes and then performing a final ‘hard bake’ for 10 minutes at 200C to increase
structural stability.

The bottom piece consists of a thin layer of PDMS bonded to a glass slide that has inlet and outlet
ports pre-drilled. Uncured PDMS is compressed between the pre-drilled slide and a second glass slide
treated with tichlorosilane to minimize adhesion of the PDMS to this second slide. Small adhesive spacers
between the two slides fixed the PDMS layer thickness to be ∼ 100µm. The PDMS was bonded to the
drilled slide by baking at 100C for 90 mins. Excess PDMS was removed from the inlet and outlet ports
using a 1 mm biopsy punch. The patterned silicon wafer was then aligned to the inlet and outlet ports
and mechanically compressed to create an airtight seal suitable for pulling suspensions of cells through the
device with a syringe. Once filled with the cellular suspension, the device ports were sealed to halt any
global flow, and the device was viewed from the bottom through the glass slide on an inverted microscope.
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6 Estimating Basal Scattering Rates

In order to collect a large number of scattering events (∼30,000 to 100,000) per pillar radius, we used
a low magnification objective (20x) that permitted viewing over a relatively large area (as compared to
40x or higher objectives). Given a mean cell density ρcell (number/area) and assuming that cells move
independently and occupy the device isotropically, then there is some probability that the interaction zone
of any single pillar is occupied by one and only one cell at a specific moment in time, given by the Poisson
probability

p1 = λe−λ (65)

where
λ = π((R+ δ)2 −R2)ρcell ' 2πδRρcell (66)

is the expected number of cells in the interaction zone of any single pillar. The rate of observable scattering
events that additionally meet the ‘one-cell-per-interaction’ filter, kscat, is then

kscat ∝ Np1 (67)

where N is the number of pillars in a field-of-view, and N ∝ R−2. Thus, to leading order

kscat ∝
δρcell

R
e−2πδρcellR. (68)

This demonstrates two points: (i) there is likely an optimal cell density for maximizing the rate of single-
celled scattering events (we did not systematically explore this) and (ii) as R increases the observable
scattering rate rapidly and monotonically decreases for a fixed field-of-view (i.e. constant magnification).
This reduction in observable scattering rate with R is why there is less data (and hence higher relative
variation) in the scattering maps for larger R. Finally, a valid scattering trajectory has only a single cell
in the interaction for the duration of the interaction, and the interaction time (duration) increases with R.
Thus kscat, as stated in eqn. 68, is likely an upper bound with respect to R.

7 Supporting Figures
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Figure 5: Scattering angle distributions as a function of dimensionless impact parameter b/R (same type
of data as shown in Fig. 3C) across a range of pillar radii. The red lines show the model predictions for
〈θ〉 given the listed radii. All calculations use the same exogenously specified cell length of L = 3.75µm.
Notably, the ‘signal-to-noise’ ratio of measured data decreases with increasing pillar radius because the
number of pillars and hence number of interactions we can observe in a single field-of-view decreases rapidly
with R (see section 6).
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Figure 6: Interaction zone exit angle distributions (β) as a function of dimensionless impact parameter
b/R, across a range of pillar radii (same type of data as Fig. 3D). The red lines show the model predictions
for 〈β〉 given the listed radii. Model predictions were calculated by using the first cell trajectory point (in
the rotated frame) outside of the interaction radius upon exit. All calculations use the same exogenously
specified cell length of L = 3.75µm. Notably, the ‘signal-to-noise’ ratio of measured data decreases with
increasing pillar radius because the number of pillars and hence number of interactions we can observe in
a single field-of-view decreases rapidly with R (see section 6).
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Figure 7: Interaction time distributions as a function of dimensionless impact parameter b/R, across a
range of pillar radii. The red lines show the model predictions, which were calculated by adding: (i) the
transit time from interaction zone entry to pillar contact using the average cell speed, (ii) the time spent
in contact with the pillar using integration of the differential equation, and (iii) the transit time from
tangency to exiting the interaction zone using the average cell speed. As b/R→ 0 the steric model predicts
a divergent interaction time because dynamics of sliding slow as αo → π/2. However, rotational diffusion
(and other sources of random rotation) remove the slowest section of the α(t) dynamics and hence the data
tend to undershoot the model near b = 0. Notably, the ‘signal-to-noise’ ratio of measured data decreases
with increasing pillar radius because the number of pillars and hence number of interactions we can observe
in a single field-of-view decreases rapidly with R (see section 6). The spread in interaction times for a
fixed bin of b is, at least in part, due to variation in propulsion speed cell-to-cell, which linearly scales the
interaction time.
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Figure 8: Plot of the von Mises offset parameter (called c above) as a function of b/R across the four
smallest radii. The data are the modes from the MLE fits for the parameter estimation. The offsets
are roughly constant across |b/R| and approximately chirally symmetric, indicating that the frequency of
random scattering events is independent of |b/R| and not related to direction. There is also a rough upward
trend in the offset with increasing pillar radius, indicating that random scattering is more common around
larger pillars. This may be related to the fact that larger pillars correspond to longer interaction times,
and hence a higher probability of a random event (e.g. chemotactic tumble) during the interaction. It may
also result from increased hydrodynamic trapping at larger radii, which causes cells to follow trajectories
around the pillar for much longer times than steric scattering, but with a random detachment time, and
hence random angle.
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Figure 9: Example output of the MLE fitting. (A) A CW chiral scattering distribution with the MLE fit
in red. (B) The natural log of the MLE fit surface for all data in the histogram, showing the mode values
for all fit parameters (red ‘x’). (C) The probability distribution for the measured value of 〈θ〉 showing the
mode and 95% confidence interval. (D) The probability distribution for the measured value of σ – the
width of the scattering distribution – showing the mode and 95% confidence interval.
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Figure 10: Fraction of cells that rotate clockwise around a pillar as a function of dimensionless impact
parameter. Assuming the pillar is centered on a local Cartesian coordinate system, clockwise rotation was
defined by cell trajectories that crossed the center-line (x = 0) with y > 0 in the rotated frame. The naive
expectation from the steric model is that this would be an increasing step-function at b/R = 0. Based on
visual inspection of imaging data, as well as quantitative analysis of breaking the model assumption that
the initial contact angle (αo) is set purely by b and R, we hypothesize that fluctuations in cell orientation
upon impact are what produce trajectories that traverse the pillar the ‘long way’ around (i.e. opposite to
the chirality predicted by the steric model). Such fluctuations are caused by translational and rotational
diffusion of the cell body, as well as variations in cell morphology that affect initial contact angle. If those
fluctuations in orientation due to diffusion and morphology are rotationally isotropic, then we expect (and
indeed observe) that these curves are symmetric upon flipping about b/R = 0 and pCW = 1/2, regardless
of pillar radius.

16



b/R

0

0.1

0.2

0.3

0.4

0.5

vo
n 

M
is

es
 w

id
th

 (σ
) (

ra
ds

)

CW
CCW

R = 8.3 µm

0 0.2 0.4 0.6 0.8 1

Figure 11: Plot of the von Mises width parameter (called σ above) as a function of b/R for R = 8.3µm.
The data are the modes from the MLE fits and the bounds are 95% confidence intervals on the parameter
estimation. The width parameter is approximately constant across all values of b/R and is approximately
chirally symmetric.

Figure 12: Electron microscopy (EM) images of typical SU-8 polymeric pillars within our microfluidic
devices. Pillar radii for each device region were measured using EM imaging.
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Figure 13: Scattering from larger pillars. (A) Schematic showing the relative scattering angles of a sterics-
only scattering event vs. a scattering mechanism that involves hydrodynamic forces that attract the cell
to the pillar surface and hence ‘over-rotate’ it relative to the steric model. (B) Comparison of the model
predictions (solid lines) to the measured data for mean scattering angle with 95% confidence intervals
around the mean, for the two largest pillars measured. The model overestimates the mean scattering angle
at these larger radii, consistent with hydrodynamic forces near these low curvature surfaces over-rotating
the cell relative to a sterics-only mechanism, and thus causing a smaller scattering angle.
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Figure 14: Comparison of data and null-model predictions in the case of no steric interaction. We collected
imaging data in a featureless area of our microfluidic device and calculated the same relationships for
scattering angle (A, θ), exit angle (B, β), and interaction time (C), assuming a nominal fictitious pillar
size of R = 5.8µm with an interaction zone of δ = 2.2µm. We used the full data collection and analysis
pipeline employed with ‘real’ steric interaction data to this scenario that lacked steric interactions (call
this the ‘null model’). The null model makes specific, quantitative predictions of the (mean) relationships
between dimensionless impact parameter (b/R) and, respectively, scattering angle (θ), exit angle (β), and
interaction time. The heat maps are the measured control data, the red lines are the zero-fit predictions of
the null model, again assuming the same L = 3.75µm. The points (white in A and B, black in C) are the
means of the measured control data suitable for comparison to the null model. Note that the predictions
for 〈θ〉 and 〈β〉 under the null model are starkly, qualitatively distinct from the predictions of the steric
model. These mean values show a mild systematic deviation from the null model as |b/R| → 1 that lies
within a standard deviation of the mean of the data (vertical data bars). We speculate that this results
from differences in path length and number-density of paths exiting the interaction zone along its circular
boundary. Such deviations break the null-model assumption of persistence length λ� (R+ δ), producing
an asymmetry that progressively grows as |b/R| increases.
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Figure 15: Based on the symmetries present in the propulsion of the bacteria and within the microfluidic
device, the distribution of scattering angles as a function of dimensionless impact parameter should be –
regardless of mechanism – symmetric when mirrored about both the θ = 0 and b/R = 0 axes. Using the
MLE fits to a modified von Mises distribution, here we plot 〈θ〉 vs. b/R with 95% confidence intervals,
with the appropriate mirroring to plot the CW and CCW trajectories overlaid. Across the range of b/R,
the data appear approximately symmetric, with mild systematic asymmetry for some radii. These slight
chiral asymmetries are likely due to (observed) systematic asymmetries in the radius of the pillars with
height due the fabrication process (see Fabrication Details and electron microscopy images, SI Fig. 12).
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