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I. TIME SCALES FOR EDGE SHRINKING AND GROWING

As discussed in the main text, we expect that a cell center of mass diffuses on the timescale associated with either
edges shrinking to zero and inducing a T1 transition or growing beyond unity and triggering a T1 transition in a
nearby edge. While in the main text we focus on the diffusion timescale of an edge in the absence of any boundary
conditions, here we numerically study a toy first-passage-time problem in order to determine if the first-passage time
statistics with absorbing boundary conditions are different from the simple diffusion problem.

Specifically, we are interested in the behavior of an edge subject to the dynamics given by Eq. (4) and Eq. (3) in
the main text, and in calculating the time it takes for such an edge to either shrink to zero length (where the full
model would attempt a T1 transition) or grows significantly longer than unity (where it is likely that nearby edges
exhibit a T1) in the absence of other interactions.

To quantify this upper edge length cutoff, we analyze the edge-length distributions in the full numerical simulations,
and Fig. S1 shows the maximum value of edge length in our finite simulation box, lmax, as a function of model
parameters. Since Fig. S1 suggests that a T1 transition is induced to change the geometry when the edge length

exceeds ∼ 1.2 ∼ 2lhex (lhex =
√

2
√

3/3 ≈ 0.62), we use that value ll = 2lhex as the upper length cutoff in our toy
model.

We numerically solve Eq. (4) using Eq. (3) with lij = l and ∆λij = ∆λ with the initial edge length l = lhex and
then calculate the time τFPT when the edge length satisfies l < 0 or ll < l for the first time, which is a first passage
time problem. We used forward Euler method with a time step δt = 0.01. ∆λ is sampled at the initial time point
t = 0 from the normal distribution N(0, σ2), which is the stationary distribution of Eq. (3).

Figure S2(a) shows the average first passage time 〈τFPT〉 calculated from 100 trajectories for each set of parameters
(σ, τ). For each simulation, we stopped calculation if the edge length keeps the condition 0 < l < ll within 105

natural time units. We avoid such trajectories as rare events in calculating 〈τFPT〉; they were only observed for
(σ, τ) = (0.02, 0.01), where 9 of 100 trajectories did not satisfy l < 0 or ll < l within 105 natural time units. To
investigate the scaling behavior in the small- and large-τ regimes, we also plot 〈τFPT〉σ2 vs. τ and 〈τFPT〉σ vs. τ in
Fig. S2(b) and (c). Figure S2(b) and (c) suggest that 〈τFPT〉 ∼ 1/σ2τ and 〈τFPT〉 ∼ 1/σ in the small- and large-τ
regimes, respectively.

As discussed in the main text, an analytical calculation of the diffusion of a single edge in the absence of any other
interactions gives MSDl(t) = 2σ2τt+ 2σ2τ2(exp(−t/τ)− 1), in which MSDl(t) ∼ 2σ2τt (t� τ) and MSDl(t) ∼ σ2t2

(τ � t) [1].
Therefore, in the small-τ regime, our numerical result for the first passage time, 〈τFPT〉 ≈ lhex/2σ

2τ , exhibits the
same scaling as the analytical MSD prediction. Interestingly, the MSD scaling for the large τ regime is also consistent
with the large τ FPT result: 〈τFPT〉 ≈ lhex/σ.

Fig. S1. Maximum edge length lmax. lmax vs. τ for σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] (from dark color to light color).

II. SCALING OF THE DIFFUSION CONSTANT FOR THE RESETTING AND RESAMPLING
MODELS

We show the scaling of the diffusion constant D with respect to σ and τ in the small and large τ regime for the
resetting and resampling models in Fig. S3. In both models, as in the persistent model, D asymptotically approaches
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Fig. S2. Scaling behavior of the average first passage time 〈τFPT〉 in the 2 vertex model. (a) 〈τFPT〉 vs. τ . (b)
〈τFPT〉σ2 vs. τ . The solid line is a guide for eyes indicating the power law τ−1. (c) 〈τFPT〉σ vs. τ . σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30]
(from dark color to light color).

D ∼ σ2τ in the small τ regime and D ∼ σ/τ in the large τ regime. We note that in some resampling model simulations
where τ and σ are near the extremes of model parameter values, numerical instabilities occur during the simulation
and so we do not include those data points in the figures.

III. ANALYSIS OF TRAPPED EDGES

We note that in the persistent model, a large number of very short edges appear when τ is large (Fig. 2(a-d)),
suggesting that some edges might be trapped close to zero length.

To test whether these have an impact on the dynamics at large τ we focus on higher-order vertices, which are
vertices where more than three cells meet, i.e. rosette structures. A CVM study by Yan et al. in the limit of zero
fluctuations recently showed that rosette structures can rigidify the epithelial tissue [2]. We want to study whether the
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(a) Resetting model (b) Resampling model

Fig. S3. Scaling of D with respect to σ and τ in the small and large τ regime for the (a) resetting and (b)
resampling models. Data collapse in a plot of Dτ/σ2 vs. τ demonstrates the scaling relation D ∝ σ2τ in the small τ
regime. The solid line is a guide to the eye indicating the power law τ2. σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] (from dark color
to light color). Data collapse in a plot of Dτ/σ vs. τ demonstrates the scaling relation D ∝ σ/τ in the large τ regime.
σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] (from dark color to light color).

rigidification of the tissue driven by rosette structures slows down the dynamics in our model in the large-τ regime.

However, unlike ref.2, by construction our model only contains 3-fold coordinated vertices. Nevertheless, we hy-
pothesize that in a dynamic simulation with finite fluctuations, vertices connected by very short interfaces restrict
the dynamics in a manner similar to multi-fold coordinated vertices. Although higher-fold vertices are generically
unstable in the fluid phase in CVMs with spatially homogeneous parameters [3], some of us previously reported similar
behavior in a 2D CVM with extra interfacial tensions between two cell types, where nearly-4-fold vertices (with very
short edges) are stabilized at the heterotypic interface [4]. Therefore it is not surprising that fluctuating heterotypic
tensions could drive similar phenomena.

This is also consistent with our previous qualitative analysis of cellular structures: Fig. 2 (b, c) shows that an
increasing number of very short edges, highlighted by square symbols, is associated with rigidification in the large-τ
regime.

To better understand how short edges affect the overall dynamics in this model, we study their individual dynamics.
Specifically, we track edges, indexed by i, that reach the threshold lth = 0.03 for checking a T1 transition. At every
subsequent timestep where the edge length continuously remains below lth, we record the edge length li(tT ), where
tT is the time since the edge first crossed lth.

To quantify this behavior, we study histograms of the edge lengths f(li) for various values of this trapping time
tT (Fig. S4). For all but the longest timescales, there is a peak around l ∼ 0.005, which is much smaller than the
imposed T1 threshold lth, suggesting there is a population of edges where the dynamics drives them to remain very
short. Such edges must remain short either because accepting a T1 transition increases the energy, and so T1 steps
are rejected, or because they alternate between T1 events at every timestep. In either case, the geometry and the
tensions are such that it is energetically favorable for the edge to remain very short over multiple timesteps, resulting
in a “trapped” short edge that functions very much like a multi-fold coordinated vertex.
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Edge length

Time

Fig. S4. The time-evolution of the distribution f(li(tT )) of the length li(tT ) of the edges experiencing T1 events.
The data for τ = 10 and σ = 0.15 is shown as an example. The color of the curves logarithmically maps the time tT ranging
between 0 and 50 natural time unit.

Figure S5(a) shows an integral of these length histogram over all time windows, F (li) =
∑

tT
f(li(tT )), which

similarly exhibits a prominent peak l ∼ 0.05, highlighting a characteristic length for edges that are trapped. We
randomly sampled 100 edges and 200 T1 events for each edge to plot Fig. S5(a). To formally define “trapped edges”,
we use this peak to define a new threshold lengthscale l∗ shown by the vertical line in Fig. S5(a), that provides an
upper bound to the length of the vast majority of trapped edges, see discussion in section III A. This allows us to
formally define all edges with length l < l∗ as trapped edges that may be functioning as “effective high-order vertices”.
We can also define a “trapped edge lifetime” τT corresponding to the number of natural time units where the edge
continuously maintains a length less than l∗.
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Fig. S5. Properties of trapped edges. (a) Time-integrated distribution of edge lengths, F (li), defined in the main text.
Trapped edges are defined as the population of edges in the peak, thresholded by the edge length by l∗ as indicated by the
yellow vertical line. (b) The average vertex coordination number per frame Zavg subtracted by 3 is plotted against τ . In (b),
we set l∗ = lth for some data points (τ, σ) = (0.01, 0.1/0.15/0.3), (0.1, 0.02), since the distributions F (li) were too broad to
determine the threshold l∗ for the trapped edges for these parameter values. (c) Semi-log plots of the probability distribution
of the life time τT of the trapped edges for τ = 10. (d) The average lifetime τT of the trapped edges is plotted against τ . The

solid line is a guide for eyes indicating the power law τ1/2. In (b-d), σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] (from dark color to light
color).
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To quantify the density of these effective higher-order vertices, we calculate Zavg, which is the average vertex
coordination number Z = 2E/V , where E and V are the number of edges and vertices per timestep [2] : if we have
no trapped edges and only 3-fold vertices, Z = 3. We calculate Zavg as Zavg = 2(E0 − Tavg)/(V0 − Tavg), where Tavg
is the average number of trapped edges per timestep. In Fig. S5(b), we plot Zavg − 3 with respect to τ for different
σ. We find that Zavg − 3 increases monotonically as τ and σ increase.

Moreover, since our system is dynamic (unlike the system in ref.2), the persistence time of multi-fold coordinated
vertices may be important. Therefore, we also investigate the lifetime of trapped edges τT , with normalized histograms
shown in Fig. S5(c) and Fig. S6. The distribution is consistent with an exponential in the moderate τ regime (τ ∼ 10)
as shown in Fig. S5(c), while it looks nearly power-law, with a large-scale cutoff, in the large-τ regime (τ ∼ 1000, see
Fig. S6). Although the mechanisms driving these distributions remains unclear, we can nevertheless extract the average
lifetime of trapped edges 〈τT 〉 as a function of model parameters, shown in Fig. S5(d). The average lifetime of trapped
edges increases dramatically with increasing τ , and also increases slightly with decreasing σ. Taken together, these
results suggest that there is a systematic increase in the fraction and persistence of effectively multi-fold coordinated
vertices at large τ , which, in the absence of other effects, should tend to rigidify the system.
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Fig. S6. The probability distribution of the life time τT of the trapped edges. (a) Semi-log and (b) log-log plots
of the probability distribution τT for τ = 1000. σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] increase from dark color to light color (circle:
σ = 0.02, square: σ = 0.05, diamond: σ = 0.10, star: σ = 0.15, triangle: σ = 0.30).

One obvious question, especially given the important role of effective multi-fold coordinated vertices, is whether
our results depend strongly on our choice of how to resample the stress in the newly created edges after a T1 swap.
The “persistent” model we have considered so far gives the new edge after a T1 swap the same tension as the old
edge, which will clearly favor trapped edges where the tension is larger and contractile. Therefore, we also investigate
more democratic ways of sampling tensions in the new T1 edge, illustrated schematically in Fig. 1 (b) and (c), which
we term “resetting” and “resampling” models.

Figure 6 shows that, as expected, resetting and resampling models generate the same diffusion constants as the
persistent models in the small-τ regimes, consistent with the hypothesis that fluctuation-driven diffusion, which should
be the same in all models, dominates at low τ . In addition, there is still non-monotonic behavior in all three models,
with the diffusion constant decreasing at large τ , while there is an obvious increase in the diffusion constant at larger
τ in the resetting and resampling models compared to the persistent model.

In order to see if multi-fold coordinated vertices play an important role in rigidification in the large τ regime of the
resetting and resampling models, we measured the fraction of trapped edges and the trapping time for both models.
In general, we follow the same procedure outlined above for the persistent model. We note that in some resampling
model simulations where τ and σ are near the extremes of model parameter values, numerical instabilities occur during
the simulation and so we do not include those data points in the figures. As shown in Figs. S7 and S8, especially in
the resampling model, there was not a significant increase in the number of trapped edges, and again only a modest
increase in the trapping time. Given that the resampling model also exhibits a nonmonotonic curve for the diffusion
constant with increasing τ , this suggests that, at least in the resampling case, the trapped edges are not responsible for
the decrease in diffusion observed at large τ . We conclude that rigidification driven by multi-fold coordinated vertices
is a potential mechanism contributing to reduced diffusion in some models, but clearly not sufficient to explain the
non-monotonoicity in all the models we studied. An interesting question for future work remains whether and how
short trapped edges are contributing to the rigidification in the persistent model, where they are common.
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Fig. S7. Comparison Zavg − 3 between three models: the persistent model (circle), the resetting model (square), the
resampling model (triangle). Zavg − 3 vs. τ for the three models, respectively. Dark and light markers represent the data with
σ = 0.02 and σ = 0.15, respectively. The distributions F (li) were too broad to determine the threshold l∗ for the trapping
edges in the following data points: (τ, σ) = (0.1, 0.02) in the persistent model, (τ, σ) = (0.1, 0.02/0.15), (1, 0.02) in the resetting
model, (τ, σ) = (0.1, 0.02/0.15), (1, 0.02/0.15), (10, 0.02/0.15), (100, 0.02), (1000, 0.02), (10000, 0.02) in the resampling model.
We hence set l∗ = lth for these data points.

A. Definition of the threshold l∗ of the trapped edges

We first detected a maximum peak at l = lmax in the time-integrated distribution F (li) as indicated by a yellow circle
marker in Fig. S5(a). We next subtracted the minimum frequency in the range lmax ≤ l ≤ lth, as the background, from
the time-integrated distribution. Using this background-subtracted distribution, we finally determined the threshold
l∗ as the minimum edge length at which the frequency is below 10% of the maximum frequency at l = lmax. In Fig. S4,
we show an example of histograms of the edge lengths f(li) for various values of the trapping time tT .
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Fig. S8. Properties of trapped edges for the resetting and resampling models. In the top panels of (a) resetting
model and (b) resampling model, the average vertex coordination number per frame Zavg subtracted by 3 is plotted against
τ . In the bottom panels, the average lifetime τT of the trapped edges is plotted against τ . The distributions F (li) were too
broad to determine the threshold l∗ for the trapping edges in the following data points: (τ, σ) = (1, 0.02) in the resetting
model and (τ, σ) = (1, 0.02/0.05/0.1/0.15/0.3), (10, 0.02/0.05/0.1/0.15), (100, 0.02), (1000, 0.02), (10000, 0.02) in the resampling

model. The solid line is a guide for eyes indicating the power law τ1/2. In (a) and (b), σ ∈ [0.02, 0.05, 0.10, 0.15, 0.30] (from
dark color to light color).


