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S-I. MULTIPARTICLE COLLISION DYNAMICS

In MPC, the fluid is represented by N point particles
of mass m undergoing subsequent streaming and collision
steps [1–4]. In the absence of any external force, the par-
ticles move ballistically in the streaming step, and their
positions ri(t) (i ∈ {1, . . . , N}) are update according to

ri(t+ h) = ri(t) + hvi(t), (S-1)

where vi is the velocity and h the time interval between
collisions, which is denoted as collision time. In the col-
lision step, the particles interact in a stochastic, but mo-
mentum conserving manner. For this purpose, the avail-
able volume is divided into cubic cells of side length a,
which defines the collision environment. In the Stochastic
Rotation Dynamics (SRD) version of MPC (MPC-SRD)
[3], the relative velocities, with respect to the center-of-
mass velocity of each cell, of the fluid particles are rotated
around a randomly oriented axis by a fixed angle α. The
orientation of the rotation axis is chosen randomly for
every collision cell and time step. Applying the angu-
lar momentum conserving rotation (MPC-SRD+a) [5–7],
the velocities after rotation are given by

vi(t+ h) = vcm(t) + R(α)vi,c + ω(t)× ri,c(t). (S-2)

Here, the center-of-mass position and velocity are

rcm =
1

Nc

Nc∑
i=1

ri, vcm =
1

Nc

Nc∑
i=1

vi, (S-3)

and the angular velocity is

ω = mI−1
Nc∑
j=1

{rj,c × (vj,c −R(α)vj,c)} . (S-4)

R is the rotation matrix [3, 4], I denotes the moment-
of-inertia tensor of the respective particles in the colli-
sion cell with respect to their center-of-mass, and ric =
ri − rcm, vic = vi − vcm. Since this rotation violates
energy conservation, we apply the Maxwell-Boltzmann
scaling approach, which yields a Maxwellian distribution
of kinetic energy.

Discretization in collision cells implies violation of
Galilean invariance. To restore Galilean invariance, a
random shift of the entire computational grid is applied
[8, 9].

S-II. RIGID BODY DYNAMICS OF SPHEROIDS

This section describes a general procedure for the
solution of the rigid body equations of motion of
spheroidal colloids with spheres as a special case.

During the MPC streaming step, a spheroid moves ac-
cording to rigid-body dynamics, i.e., translational motion
for the center of mass position, C, and rotation, which
is described by a quaternion, q = (q0, q1, q2, q3)T [13], as
described in Ref. [14]. Explicitly, the equations of motion
are given by

MC̈ = F , (S-5)

q̈ =
1

2

[
Q(q̇)

(
0

Ωb

)
+ Q(q)

(
0

Ω̇b

)]
, (S-6)

q̇ =
1

2
Q(q)

(
0

Ωb

)
, (S-7)

dΩbα
dt

= I−1α
[
T bα + (Iβ − Iγ)ΩbβΩbγ

]
. (S-8)

Here, Q(q) is

Q(q) =

q0 −q1 −q2 −q3q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 (S-9)

and F and T are the force and torque acting on the
spheroid. Forces and torques are derived from steric in-
teractions with another squirmers. Equations (S-8) are
Euler’s equations for rigid body dynamics and hold for
(α, β, γ) = (x, y, z), (y, z, x), and (z, x, y). The super-
script b refers to the body fixed reference frame. Body-
fixed and laboratory-frame quantities can be related via

ab = Das, (S-10)

where ab is a vector in the body-fixed reference frame
and as a vector in the laboratory frame (space fixed).
The rotation matrix, D, is related to the quaternion q
by

D =q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q2q1 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q2q1 + q0q2) 2(q3q2 − q0q1) q20 − q21 − q22 + q23

 .

The orientation vector of a spheroid is es = DTeb =
DT (0, 0, 1)T . The moment of inertia tensor in the body-
fixed frame Ib is a constant diagonal matrix with diagonal
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elements Ix = (M/5)(b2x + b2z) = Iy and Iz = (2M/5)b2x.
When needed, the angular velocity is calculated as Ωs =

DT
(
Ib
)−1

DLs, where Ls is the angular momentum. For
vectors in the laboratory frame, we will frequently omit
the superscript.

For the numerical integration of the equations of mo-
tion, the Verlet algorithm for rigid-body rotational mo-
tion is applied, as proposed in Ref. [13]. Integration for
a time step τ is performed as follows:

• Update C and q according to

C(t+ τ) = C(t) + U(t)τ +
τ2

2M
F s(t), (S-11)

q(t+ τ) = (1− λ̃)q(t) + q̇τ +
τ2

2
q̈, (S-12)

λ̃ = 1− q̇2τ2/2 (S-13)

−
√

1− q̇2τ2 − q̇ · q̈τ3 − (q̈2 − q̇4)τ4/4.

The parameter λ̃ is introduced to ensure q2 = 1.

• Calculate forces and torques F s(t+ τ) and T s(t+ τ).

• Update U and Ls according to

U(t+ τ) = U(t) +
τ

2M
[F s(t) + F s(t+ τ)], (S-14)

Ls(t+ τ) = Ls(t) +
τ

2
[T s(t) + T s(t+ τ)]. (S-15)

S-III. IMPLEMENTATION OF A SPHEROIDAL
SQUIRMER IN MPC

A. Streaming step

During the streaming step, a spheroid will collide with
several MPC particles. Since the total change in (an-
gular) momentum of a spheroid in a streaming step is
small, we perform the collisions with MPC particles in a
coarse-grained way [15] (see also Ref. [16]).

At first, we perform a streaming from t to t+ h with-
out interactions with MPC particles, but taking steric
interactions into account as described in Sec. S-II. Sub-
sequently, all MPC particles are streamed, i.e., their posi-
tions are updated as described in Sec. S-I, where a certain
fraction of MPC particles penetrates a spheroid. Each
particle i inside a spheroid at time t + h is moved back
in time by half a time step and subsequently translated
onto the spheroid’s surface. The translation can be re-
alized in different ways. One possibility is to construct
a virtual spheroid with semi-axes b̃z, b̃x, b̃z/b̃x = bz/bx
and ri(t+h/2) on its surface. The particle is then trans-
lated along the normal vector of the virtual spheroid until
it is on the real spheroid’s surface. Alternatively, the dif-
ference vector ri(t + h/2) − C(t + h/2) can be scaled
such that the particle position lies on the spheroid’s sur-
face. A comparison yields no significant difference. For
all MPC particle on the spheroid’s surface at t+h/2, the
momentum transfer

Ji = 2m
{
vi −U −Ω× (ri −C)−DTub

sq[D(ri −C)]
}

(S-16)

is determined, taking into account the squirmer surface
fluid velocity usq of Eq. (1) [17]. A useful identity to
determine the tangent vector s on the squirmer surface
is given in Eq. (8) of Ref. [18], and the coordinate ζ is
given by

ζ =
1

2c

(√
x2 + y2 + (z + c)2 −

√
x2 + y2 + (z − c)2

)
.

(S-17)

The velocity of the MPC particle is updated according
to v′i = vi − Ji/m. Subsequently, the position ri(t +
h) is obtained by streaming the MPC particle for the
remaining time h/2 with velocity v′i, i.e., ri(t + h) =
ri(t+ h/2) + hv′i/2.

As a consequence of the elastic collisions, the center-
of-mass velocity and rotation frequency of a spheroid are
finally given by

U(t+ h) = U ′(t+ h) + J/M, (S-18)

Ω(t+ h) = Ω′(t+ h) + DT
(
Ib
)−1

DL, (S-19)

where J =
∑
i Ji is total momentum transfer by the

MPC fluid and L =
∑
i (ri(t+ h/2)−C(t+ h/2)) × Ji

is the respective angular momentum transfer. The
prime indicates the velocity and rotation frequency af-
ter streaming without MPC interactions.

B. Collision step

For the collision step with MPC particles, phantom
particles are distributed inside each spheroid for no-slip
boundary conditions [8, 15, 16]. Their number density
and mass are equal to those of fluid particles. Phantom
particle positions rpi are uniformly distributed inside a
spheroid and their velocities are given by

vpi = U + Ω× (ri −C) + usq,i + vRi . (S-20)

The Cartesian components of vRi are Gaussian-
distributed random numbers with zero mean and vari-
ance

√
kBT/m. The squirming velocity usq,i is de-

termined by Eq. (1) of the main document, with the
phantom particle position projecting onto the spheroid’s
surface (cf. Sec. S-III A). As a result of MPC colli-
sions, a spheroid’s linear and angular momenta change
by Jpi = m(v̄pi − vpi ) and Lpi = (rpi −C) × Jpi , where
v̄pi and vpi are the phantom particle’s velocity after and
before the MPC collision. Hence, the spheroid velocity
and angular velocity become

U(t+ h) = U(t+ h) + Jp(t+ h)/M, (S-21)

Ω(t+ h) = Ω(t+ h) + RT
(
Ib
)−1

RLp. (S-22)

Here, U(t + h) and Ω(t + h) on the right-hand side are
the values after streaming, Eq. (S-18) and (S-19).

S-IV. STERIC INTERACTIONS

Excluded-volume interactions between spheroids are
taken into account by the approach provided in Ref. [19],
see also [16].



3

The spheroid’s surface in the laboratory frame is given
by the quadratic form

1 = A(x) ≡ (x−C)TA(x−C), (S-23)

where the orientation matrix A can be expressed as

A = (1− eeT )/b2x + eeT /b2z; (S-24)

1 is the unit matrix. For the steric interactions, we intro-
duce a virtual safety distance dv, which is small compared
to bx and bz. When computing steric interactions, we re-
place bx and bz by bx + dv and bz + dv, respectively. For
all simulations, the value dv = 0.7a is used.

The potential

U = 4ε0

[(
σ0

dR + σ0

)12

−
(

σ0
dR + σ0

)6
]

(S-25)

between spheroids is introduced to prevent their over-
lap. Here, σ0 and ε0 correspond to a length and en-
ergy scale, respectively, which are set to ε0 = kBT and
σ0 = 2dv. The directional contact distance dR between
two spheroids, with orientation matrices A1, A2 and cen-
ter positions C1, C2, is an approximation to their true
distance of closest approach and is defined by

dR = R(1− F (A1,A2)−1/2) (S-26)

Here, R = C2 − C1, R = |R|, and F (A1,A2) is the
elliptic contact function, defined as [19]

F (A1,A2) = max
λ

min
x
S(x, λ)

= max
λ

min
x

(λA1(x) + (1− λ)A2(x)) .

(S-27)

Minimization with respect to x demands ∇S(x, λ) = 0,
and hence,

x(λ) = {λA1 + (1− λ)A2}−1 {λA1C1 + (1− λ)A2C2} .
(S-28)

The value λ = λc that maximizes S(x(λ), λ) can be found
by the root finding problem

A1(x(λ))−A2(x(λ)) = 0. (S-29)

The forces and torques arising from the potential (S-25)
can be calculated analytically and are given by [19]

F1 =
24ε0
σ0

[
2

(
σ0

dR + σ0

)13

−
(

σ0
dR + σ0

)7
]

×
(
R

R
(F−1/2 − 1)− R

2
F−3/2Xc

)
, (S-30)

and

T1 =− 12Rε0
σ0

[
2

(
σ0

dR + σ0

)13

−
(

σ0
dR + σ0

)7
]

(S-31)

× F−3/2(xc −C)×Xc (S-32)

for the first spheroid, where Xc = 2λcA1(xc −C1). The
force and torque on the second spheroid follow by New-
ton’s action-reaction law, i.e.,

F2 = −F1, (S-33)

T2 = −T1 + R× F1. (S-34)

We restrict ourselves to short-rang repulsive interactions
by setting the potential U to a constant value for dR >
( 6
√

2−1)σ0, which implies that F1 and T1 are zero for this
range of dR values. Note that an upper bound to dR is
R−2bz, which means that two spheroids will not interact
if R > 2bz+( 6

√
2−1)σ0. This inequality is checked before

a numerical calculation of dR is employed.
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S-V. DECAY TIME OF THE BOND-VECTOR
AUTOCORRELATION FUNCTION
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FIG. S1. Characteristic decay time τl of the bond-vector ori-
entational autocorrelation function of Fig. 7 as a function of
the active stress β for the Péclet numbers Pe = 10, 20, 30,
and 60. The decay time is scaled by the rotational diffusion
coefficient of a passive colloid, where γR = 2D0

R.

S-VI. CORRELATION FUNCTION OF
PROPULSION DIRECTION AND BOND

VECTOR
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FIG. S2. (Top) Correlation function of the squirmers propul-
sion direction, e(t) and the bond vector R. (Bottom) Corre-
lation function the bond vector and the squirmers propulsion
direction. The Péclet number is Pe = 30. The two correla-
tions show qualitative and quantitative differences reflecting
the complexity of the strong hydrodynamic coupling between
the two squirmers of the dumbbell.
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S-VII. SQUIRMER-SQUIRMER PROPULSION
ALIGNMENT
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FIG. S3. Average alignment p = 〈e1 · e2〉 of the squirmer
propulsion directions as a function of the dumbbell bond
length for the active stress β = 0, ±1, ±3, and ±5. The
Péclet number is Pe = 10.

S-VIII. BOND FORCE
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FIG. S4. Bond force (Eq. (13)) as a function of Péclet number
for the indicated active stresses.
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FIG. S5. Bond force (Eq. (13)) as a function of β for the
indicated Péclet numbers.
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FIG. S6. Bond force (Eq. (13)) as a function of the dumbbell
bond length for the indicated active stress and Pe = 30.
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S-IX. MEAN-SQUARE DISPLACEMENT
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FIG. S7. Center-of-mass mean-square displacement of
squirmer dumbbells as a function of the scaled time D0

Rt for
the indicated active stresses and the Péclet number Pe = 30.
The dotted lines are fits with the MSD of active Brownian
dumbbells, Eq. (14).

S-X. MOVIES

• Movie M1: M1 Beta-5CM.mpeg
Squirmer dumbbell in the center-of-mass reference
frame: Pe = 30 and β = −5 (pusher).

• Movie M2: M2 Beta-5lab.mpeg
Squirmer dumbbell in the laboratory reference
frame: Pe = 30 and β = −5 (pusher).

• Movie M3: M3 Beta5CM.mpeg
Squirmer dumbbell in the center-of-mass reference
frame: Pe = 30 and β = 5 (puller).

• Movie M4: M4 Beta5lab.mpeg
Squirmer dumbbell in the laboratory reference
frame: Pe = 30 and β = 5 (puller).
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