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(3) Université Paris Saclay, CEA, Laboratoire Matière
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S1. Expression for the effective torque

The equation
dI(t)ω(t)

dt
= T(t), (1)

is usually written down for rigid bodies with T(t) being the torque on the body with
respect to its center of mass: T =

∑

i∈µ∆ri × fi, where fi is the force on atom i.
Here as the body is not rigid this equality is not exactly true. However, the inertia
tensor I and the vector ω are well defined and their derivative can in principle be
derived analytically and can obviously be computed numerically. By analogy to the
case of a rigid body, we denote this derivative T(t) and name it the effective torque.
In the current basis (u1(t),u2(t),u3(t)), the components of the angular velocity ω(t)
are ω

′(t) and those of vector T(t) are denoted T′(t). We have consequently:

d

dt

(

3
∑

i=1

ω′

i(t)I(t)ui(t)
)

=
3

∑

i=1

T ′

i (t)ui(t) (2)

d

dt

(

3
∑

i=1

ω′

i(t)Ii(t)ui(t)
)

=
3

∑

i=1

T ′

i (t)ui(t), (3)

where Ii(t) is the ith eigenvalue of the inertia tensor I(t), or the ith principal moment
of inertia. We made use here of the fact that the basis vectors (u1(t),u2(t),u3(t))
are eigenvectors of I(t). Dropping the explicit time dependence and developing the
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derivative with respect to time yields

3
∑

i=1

ω̇′

iIiui + ω′

iİiui + ω′

iIiu̇i =
3

∑

i=1

T ′

iui (4)

3
∑

i=1

ω̇′

iIiui + ω′

iİiui + ω′

iIi(ω × ui) =
3

∑

i=1

T ′

iui. (5)

In the current basis of eigenvectors (u1(t),u2(t),u3(t)), which is a direct orthonormal
basis, the components of ω are ω′

i, for i ∈ 1, 2, 3 and the component of ui are trivial.
It is then very easy to express the cross product ω×ui in the current basis. Collecting
the three components in the current basis and reorganizing leads to

Iiω̇
′

i = T ′

i − İiω
′

i + ω′

i−1ω
′

i+1(Ii+1 − Ii−1), (6)

with the convention that i+1 and i− 1 are the indices following and preceding i in
a circular permutation, respectively.

S2. Equation of motion for the quaternion

In this appendix, a quaternion is denoted with a sans serif character like Q, its
components are denoted Q0, Q1, Q2 and Q3:

Q =









Q0

Q1

Q2

Q3









. (7)

Q0 is the scalar part of the quaternion and (Q1, Q2, Q3)
T forms a vector associated

to the quaternion and denoted with a bold character Q. We recall here the multi-
plication rule for two quaternions Q and Q′ leading to a third quaternion Q′′ = QQ′:

Q′′

0 = Q0Q
′

0 −Q ·Q′

Q′′ = Q0Q
′ +Q′

0Q+Q×Q′,
(8)

where · and× are the usual scalar and cross products applied to vectors, respectively.
The conjugate of a quaternion Q is denoted Q∗ and defined as

Q∗

0 = Q0

Q∗ = −Q
(9)

so that

QQ∗ = Q∗Q =









∑3
m=0Q

2
m

0
0
0









(10)
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To obtain the equation of motion for the quaternion Qµ, we follow closely the
proof done for rigid bodies in Ref. [1]. The main difference is that the proof is ap-
plied to the eigenvectors of the inertia tensor instead of being applied to any atomic
position respectively to the center of mass of the rigid body. In the following the
index µ is dropped for clarity. We use the rotation matrix C(t) defined as trans-
forming the current basis of eigenvectors (u1(t),u2(t),u3(t)) back into the reference
basis (e1, e2, e3) in terms of the quaternion Qµ:

ei = C(t)ui(t), ∀i ∈ {1, 2, 3}. (11)

Equation 11 is equivalent to

ui(t) = Q(t)eiQ(t)
∗, (12)

where the quaternion ui(t) associated to the eigenvector ui(t) is defined as

ui(t) =









0
ui,1(t)
ui,2(t)
ui,3(t)









. (13)

Differentiating Eq. 12 with respect to time yields

u̇i(t) = Q̇(t)ui(0)Q(t)
∗ + Q(t)ui(0)Q̇(t)

∗ (14)

= Q̇(t)Q(t)∗Q(t)eiQ(t)
∗ + Q(t)eiQ(t)

∗Q(t)Q̇(t)∗ because QQ∗ = 1, (15)

= Q̇(t)Q(t)∗ui(t) + ui(t)Q(t)Q̇(t)
∗ through Eq. 12 , (16)

= Q̇(t)Q(t)∗ui(t)− ui(t)Q̇(t)Q(t)
∗ because ˙QQ∗ = 1̇ = 0. (17)

We define
g(t) = Q̇(t)Q(t)∗ (18)

hence
u̇i(t) = g(t)ui(t)− ui(t)g(t). (19)

The scalar part of u̇i(t) is zero by definition because u̇i(t) is a pure vector. The
vector part of u̇i(t) is, using the multiplication rule for quaternion,

u̇i(t) = g(t)× ui(t)− ui(t)× g(t) (20)

= 2g(t)× ui(t). (21)

Moreover, for the three eigenvectors ui(t), i = 1, 2, 3, one can define a unique angular
velocity ω(t) such that

u̇i(t) = ω(t)× ui(t). (22)

One can see immediately that this angular velocity is related to the quaternion g(t)
through

ω(t) = 2g(t) (23)

= 2(−Q̇0Q +Q0Q̇− Q̇×Q), (24)
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where the time dependence is made implicit. The components of all vectors and
matrices defined until now can be expressed in any basis. For the sake of simplicity,
the components of the vector ω(t) in the reference basis (e1, e2, e3) are denoted with
the same letter ω(t) and its components in the current basis (u1(t),u2(t),u3(t)) are
denoted ω

′(t). It is useful to define ω
′(t) because the equation of motion of the

atoms inside bead µ are much easier to write down in the current basis, where the
inertia tensor is diagonal. The two sets of components ω′ and ω can also be seen as
two different vectors related by

ω
′(t) = C(t)ω(t), (25)

where C(t) is again the rotation matrix. The corresponding quaternion g′(t) is
defined as

g′(t) = Q(t)∗g(t)Q(t), (26)

= Q(t)∗Q̇(t)Q(t)∗Q(t) (27)

= Q(t)∗Q̇(t) (28)

and
ω

′(t) = 2g′(t). (29)

Using the multiplication rule, Eq. 29 develops to

ω
′(t) = 2(Q0Q̇− Q̇0Q−Q× Q̇), (30)

or in matrix form

Q̇ =
1

2
Aw′(t) (31)

where matrix A is

A =









Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0









. (32)

Eq. 31 is the equation of motion for the quaternion. Note that this equation can
be used as a practical way to obtain the angular velocity ω

′(t) in the current basis
from the derivative of the quaternion, as the inverse of matrix A is its transpose.

To obtain the equation of motion for Q̇(t), we derive Eq. 28:

ġ′ = Q̇∗Q̇+ Q∗Q̈. (33)

Multiplying on the left hand side by Q yields

Qġ′ = QQ̇∗Q̇+ Q̈ (34)

Q̈ = Qġ′ − QQ̇∗Q̇. (35)
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Reformulating the first term of the sum on the right hand-side of Eq. 35 using Eq. 29
leads to

Qġ′ =









−1
2

∑3
m=0Qmω̇

′

m
1
2
Q0ω̇

′

1 +
1
2
(Q2ω̇

′

3 −Q3ω̇
′

2)
1
2
Q0ω̇

′

2 +
1
2
(Q3ω̇

′

1 −Q1ω̇
′

3)
1
2
Q0ω̇

′

3 +
1
2
(Q1ω̇

′

2 −Q2ω̇
′

1)









(36)

Moreover, in the second term of the sum on the right hand side of Eq. 35 the
quaternion QQ̇∗Q̇, has only a scalar part equals to

∑

m Q̇2
m, so that

QQ̇∗Q̇ = (
3

∑

m=0

Q̇2
m)Q. (37)

Introducing the result of Eqs. 36 and 37 into Eq. 35 leads in matrix form to









Q̈0

Q̈1

Q̈2

Q̈3









=
1

2









Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

















−2
∑3

m=0 Q̇
2
m

ω̇′

1

ω̇′

2

ω̇′

3









, (38)

where matrix A can be recognized. Note again that Eq. 38 can be used to obtain
the time derivative of the angular velocity ω̇

′ from the second derivative of the
quaternion.

S3. Computation of the average force and effective

torque

The average pair force 〈Fµν〉 and the average pair effective torque 〈Tµν〉 are needed
to estimate the coarse-grained potential. The average pair force 〈Fµν〉 is estimated
in the following way. We assume that

〈Fµν〉 =
1

2
〈(Fµ − Fν)〉. (39)

This is exactly true if there are only pair interactions at the atomic level and when
the average is done for all atomic variables and not only for the fast ones. It has
been checked in Ref. [2] for alkanes that doing the average on all variables does not
change the result. As eµν depends only on the slow variables it can be included in
the average and one finally gets

∂W

∂Rµν

(Rµν , cosφµν) = −
1

2
〈(Fµ − Fν) · eµν〉(R,φ), (40)

where the dependence of the average 〈·〉 on Rµν and φµν only and not on all the slow
variables has been highlighted. Eq. 40 can be directly used to compute the derivative
of the potential with respect to the distance using molecular dynamics simulations
where the force on each bead is known exactly and in which the average can be
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computed. Moreover, the derivative ∂W/∂Rµν is an even function of cos φµν . Indeed,
the two configurations where the orientations of beads µ and ν are characterized by
(uµ,1,uν,1) and (uµ,1,−uν,1) are identical and should lead to the same force between
the two beads, whereas they lead to two opposite values of cosφµν . The fact that
∂W/∂Rµν is an even function of cosφµν was checked within numerical noise (not
shown) and to optimize the statistics, ∂W/∂Rµν is only computed for cosφµν ∈ [0, 1]
using all possible values of cosφµν .

For the average pair effective torque, we assume similarly that

〈Tµν〉 =
1

2
〈(Tµ −Tν)〉, (41)

and get
∂W

∂ cosφµν

= −
1

2 sin2 φµν

〈(Tµ −Tν) · (uµ,1 × uν,1)〉R,φ. (42)

This cannot yet be used directly in molecular dynamics simulations because Tµ is
the effective torque. Its expression in terms of atomic variables is given in the current
basis in Eq. 6, involving the angular velocity ω

′, its derivative ω̇
′, the moments of

inertia Ii and their derivatives. These quantities can be calculated from molecular
dynamics knowing the positions of all atoms for three consecutive time steps along
a long trajectory. The moments of inertia of each bead are directly computed as the
eigenvalues of the inertia tensor. Their derivatives are computed as İ = (I(t+ dt)−
I(t))/dt, where I(t+dt) is the same moment of inertia of the same bead at time t+dt
and dt is the time step. The angular velocity ω

′ and its derivative ω̇
′ are computed

using Eqs 31 and 38, respectively. This implies to compute the quaternions of all
beads and their first and second derivatives with respect to time. Some care needs to
be taken to guarantee that the same basis of eigenvalues between the few equivalent
ones is chosen for times t, t + dt, and t + 2dt as noted by Kempfer et al [3], and
that the same quaternion and not its opposite is computed, see ESI, Sec. S6, for
details. After all these calculations, one can get the effective torque on each bead for
many configurations. Equation 42 can then be used to get ∂W/∂ cos φµν . Moreover,
Eq. 42 induces that the derivative ∂W/∂ cosφµν is an odd function of cos φµν : the
torque between bead µ and ν is identical whether uν,1 or −uν,1 is considered whereas
the cross product uµ,1 × uν,1 changes sign. As for the force, this was checked (not
shown) and ∂W/∂Rµν is only computed for cos φµν ∈ [0, 1] using all possible values
of cosφµν .

S4. Smoothing procedure

The raw potential is smoothed within empirically chosen bounds and extended to a
continuous and differentiable function beyond the bounds. This procedure is useful
to get a smoother potential and consequently a smoother force and torque. The
bounds are necessary to eliminate from the smoothing procedure regions of phase
space where the noise is high.

The smoothing and extension procedures are illustrated in Fig. 1. The smoothing
is done using a Savitzky-Golay filter [4, 5] first as a function of the distance Rµν
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Figure 1: (a) Variation of the non-bonded potential W nb with the distance R for
cosφ = 0 for a level of coarse-graining λ of 1 monomer per bead. The black circles
correspond to the raw data, after integration. The red solid line corresponds to
the data after the smoothing procedure along R has been applied for R > 3.5 Å.
The dashed green line corresponds to the data after both smoothing procedures
have been applied. The blue dotted line correspond to the final potential, after
the smoothing and extension procedure have been applied. (b) Same as (a) for the
variation with cosφ at R = 5Å.

for all values of cosφµν within bounds which depend on cosφµν . Then, the result
is smoothed as a function of cosφµν for all values of Rµν within bounds deduced
from the first bounds given. The effect of the smoothing procedures are shown
as a function of Rµν in Fig. 1 (a) and as a function of cos φµν in Fig. 1 (b) for
a level of coarse-graining λ of 1 monomer per bead. As expected, the smoothing
procedure along Rµν is more convincing for the potential plotted against Rµν and
the smoothing procedure along cosφµν is more convincing for the potential plotted
against cosφµν . Fortunately, after both smoothing procedures are performed the
final smoothed potential is quite similar to the potential smoothed along Rµν only
and still corresponds very well to the raw data plotted against Rµν as can be seen
in the inset of Fig. 1 (a). Meanwhile, the smoothness against cosφµν is improved
after the smoothing procedure along this variable as can be seen in Fig. 1 (b). For
these two reasons, we considered our simple smoothing procedure in two steps as
good enough for our purpose. After the smoothing procedures are performed, the
zero of the potential is recalculated at the cutoff distance Rµν = Rc and cos φµν = 0
for non-bonding interactions.

Finally, the smoothed function is extended to a continuous and differentiable
function of Rµν for all values of cosφµν beyond the first bounds given. An example
of the final potential and its extension is displayed in Fig. 1 (a). In the inset of this
figure, one can see a small difference between the final extended potential and the
smoothed potential around 11Å. This is due to the recalculation of the zero of the
potential forR = Rc and cosφ = 0 between the smoothing and extension procedures.
The effect is extremely small. To conclude on the smoothing procedures, the effect
is the one expected: a smoother function of both Rµν and cosφµν still very close to
the raw data.
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S5. An intramolecular 1,3 anisotropic pair poten-

tial

In order to stay strictly within the pair approximation, we derived an intramolecular
1,3 potentialW intra1,3 depending on the distance between beads 1 and 3 and the angle
between their relative orientations. It is shown in Figs. 2 (a) and (b) for a level of
coarse-graining λ of 1 monomer per bead. The minimum of the intramolecular 1,3
potential plotted against R is quite flat and is shifted from the interval [4 Å−8 Å]
to [5 Å−9 Å] as cos φ increases. The corresponding intramolecular 1,3 isotropic
potential has an even larger minimum between R = 4 Å and R = 9 Å. As for the
bonding potential, the effect of the orientation on the intramolecular 1,3 potential
is important: at a distance of 9 Å, the potential varies of nearly 20 kBT between
cosφ = 0 and cosφ = 1.
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Figure 2: (a) Variation of the intramolecular 1,3 potential W intra1,3 with the distance
R for different values of cosφ for a level of coarse-graining λ of 1 monomer per bead.
The thick black lines correspond to the isotropic potential. The results are shown
after the smoothing and extension procedures have been applied. (b) Same as (a)
for the variation with cosφ at different values of R.
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S6. Choosing the same basis and the same quater-

nion at two consecutive time steps

To compute the angular velocity and the effective torque on each bead in the current
basis, we need to compute the first and second derivative of the quaternion of each
bead. To get these numerically, we need to determine the same quaternion at times
t, t + dt, and t + 2dt, where dt is the MD time step. This appendix explains how
to get the same quaternion at times t and t + dt, the exact same procedure can be
applied to get the same quaternion at times t+ dt and t+ 2dt.

The quaternion at each time step is calculated from the rotation matrix whose
components are in column the eigenvectors u1(t), u2(t), and u3(t) of the inertia ten-
sor of each bead using a standard method [6], detailed in the website https://www.
euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/.

First, we need to choose a unique combination of the eigenvectors u1(t), u2(t),
and u3(t) at time t. As the inertia tensor is a symmetric matrix, its eigenvectors
form an orthonormal basis. The eigenvectors can be sorted from the lowest corre-
sponding eigenvalue to the highest. We choose a direct orthonormal basis among
all the orthonormal bases possible, by changing the sign of one of the eigenvectors if
necessary. There are four equivalent direct orthonormal bases of sorted eigenvectors:
(u1(t),u2(t),u3(t)), (−u1(t),−u2(t),u3(t)), (−u1(t),u2(t),−u3(t)), (u1(t),−u2(t),−u3(t)).
We choose one of them arbitrarily.

The second thing to secure is that the same eigenvectors at time t and t + dt
are calculated. The first possible change between times t and t + dt is a change in
the numerical order of the eigenvalues. It is especially possible for the two highest
eigenvalues which are close. To prevent any such exchange between the sorted
eigenvectors, we keep the order chosen at time t, by checking that in absolute value
|u1(t)·u1(t+dt)| > |u1(t)·u2(t+dt)| and |u1(t)·u1(t+dt)| > |u1(t)·u3(t+dt)|. If it is
not the case and if |u1(t)·u1(t+dt)| < |u1(t)·u2(t+dt)|, we check first that u3(t+dt)
is not to be changed by verifying that |u3(t)·u3(t+dt)| > |u1(t)·u3(t+dt)|, and then
exchange u1(t+dt) and u2(t+dt). If instead |u1(t) ·u1(t+dt)| < |u1(t) ·u3(t+dt)|,
we do the same with u1(t+ dt) and u3(t+ dt). Finally if u1(t+ dt) does not need to
be swapped with either u2(t+ dt) or u3(t+ dt), we check that |u2(t) · u2(t+ dt)| >
|u2(t) · u3(t + dt)|. If not, the exchange between u2(t + dt) and u3(t + dt) is done.
This guarantees that the eigenvectors are in the same order at time t and t + dt.
A case, where the exchange between the eigenvectors was undetermined was never
encountered. The second possible change for the eigenvectors is their sign. After
the order has been secured, we consequently check the sign of ui(t) · ui(t + dt), for
all i ∈ 1, 2, 3 and change the sign of ui(t + dt) if the dot product is negative. We
now have the exact same basis of eigenvectors. The smoothness of the change can
be checked on the autocorrelation function of each eigenvector displayed in Fig. 5.

The last thing to secure is that the same quaternion is obtained from the rotation
matrix. The only thing left undetermined is the sign of the quaternion itself, because
the rotations of π and −π around the same axis yield the same rotation matrix but
two opposite quaternions. If Q0(t)Q0(t+ dt) +Q1(t)Q1(t+ dt) +Q2(t)Q2(t+ dt) +
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Q3(t)Q3(t + dt) < −0.99 we change the sign of Q(t + dt). After all this is done,
there is no abrupt change in the quaternion components or unphysical large value of
Q̇. The numerical evaluation of the angular velocity, the effective torque and also of
the quantity ǫ associated to the time derivative of the moments of inertia is always
done after all this procedure is completed.
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