Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2020

ESI

CATALYSIS IN PICKERING EMULSIONS

Ana Maria Bago Rodriguez* and Bernard P. Binks*

Department of Chemistry, University of Hull, Hull. HU6 7RX. U.K.

*Proofs and correspondence to:

Professor B.P. Binks <u>b.p.binks@hull.ac.uk</u> Dr A.M. Bago Rodriguez <u>a.bago-rodriguez@hull.ac.uk</u>

Ref.	Liquid 1	Liquid 2	Particle emulsifier (size)	Catalyst	Emulsion type	Chemical reaction	Comments
25	Water	Isooctane	SiO ₂ nanoparticles hydrophobised <i>in situ</i> by <i>N,N</i> - dimethyldodecylamine (20 nm)	Lipase from <i>Candida</i> <i>rugosa</i>	o/w	Hydrolysis of olive oil and esterification of octanol with oleic acid	Destabilisation/re- emulsification by bubbling N ₂ and CO ₂ , respectively
26	Water	Heptane	CALB ^a immobilised on nanoparticles prepar copolymerization of styrene methacrylate (228	red by and glycidyl	o/w	Esterification of hexanol with hexanoic acid	HIPE ^b
60	Water	Decane	Mesoporous and non- porous SiO ₂ modified with dimethyloctadecyl[3- (trimethoxysilyl)propyl]a mmonium chloride or octadecyl trimethoxysilane (~100 nm)	Rh-TPPTS ^c	o/w	Hydroformylation of 1-octene	-
68	Water	1-Dodecene	Hydrophilic SiO ₂ (l = 100 nm, d = 20 nm) or hollow Halloysite ^d nanotubes (l = 800 nm, d = 50 nm)	Rh- sulfonated 4,5- bis(diphenyl phosphino)- 9,9- dimethylxan thene	o/w	Hydroformylation of 1-dodecene	-
75	Water	Toluene	Pd/triamine-octyl bifunctio	nalized hairy	o/w	Hydrogenation of	Protonation/deprotonati

Table S1. Summary of published literature involving catalysis in various kinds of Pickering emulsions.

			SiO ₂ (250-350 nm)			styrene	on switches the wettability of the catalyst surface thus driving emulsion inversion (o/w to w/o)
76	Water	1- Methylnaphthal ene	TiO ₂ (14 nm)	o/w	Photocatalytic degradation of 1- methylnaphthalene	Photocatalytic degradation with UV light
78	Water	Styrene	Pd (2-6 nm)/graph sheets (nitic carbon nitride g-C ₃ N ₄)	o/w	Hydrogenation of alkenes	H ₂ generated <i>in situ</i> from NH ₃ BH ₃
79	Water	Toluene	Amino-functionalis nm, d = 1	- (o/w	Hydrogenation of styrene	Destabilisation/re- emulsification by addition of HCl and NaOH, respectively
81	Water	Hexadecane	Cellulose nanofibers with aldehyde groups (ACNFs) (1. ~20 nm)		o/w	Reduction of 4- nitrophenol and common dyes (methylene blue and methyl orange) with NaBH ₄	Nanoparticles are grown <i>in situ</i> on interfacial ACNFs layer through aldehyde induced reduction of [PdCl ₄] ²⁻ , [AuCl ₄] ⁻ or [PtCl ₆] ²⁻ . Continuous flow reaction
86	Water	Decalin	Pd/Janus nanoparticles (silica functionalised with aminopropyltriethoxysilane, APTES) (~ 20 nm)		o/w	Hydrogenation of benzaldehyde and glutaraldehyde	Phase-selective catalysis
104	Water	Toluene	HDPA ^e -functionalized Fe ₂ O ₃ - MO _x)/Al ₂ O ₃ nanoparticles (M is either Mn, Co, Ni, Cu, Cr, Mo, V or Ti) (~ 80 nm)		o/w	Oxidation of toluene to benzaldehyde	-
87	Water	Bio-octanol	TiO ₂ particles n	nodified with 3-	o/w	Photocatalytic H ₂	Reaction triggered with

			(trimethoxysilyl)pr (1.8	ropyl methacrylate μm)		production	light
98	Water	Hexane	8A PEG-CD ^f and 8A PEG-Fc ^g self- assembled into stimulated microgels (~ 200 nm)	Lipase from Pseudomonas cepacia	o/w	Hydrolysis of triacetin and kinetic resolution of (<i>R</i> , <i>S</i>)- 1-phenylethanol	Fc is redox-active and the electrochemical response allows the reversible formation and deformation of the microgels which affects emulsion stability
108	Water	Heptane	conjugated to poly	<i>a rugose</i> chemically dopamine-modified 0, 150 and 500 nm)	o/w	Hydrolysis of <i>p</i> - nitrophenyl palmitate	-
112	Water	Toluene	Bare, metal- functionalised and magnetic- functionalised porous hollow carbonaceous spheres synthesized from <i>S. Cerevisiae</i> cells (2 µm)	Sodium sulphide, NaBH4	o/w	Reduction of <i>p</i> - nitroanisole	Destabilisation/re- emulsification is pH- and magnetic field- dependent
113	Water	Decanol	Au/PEO ⁱ -b-P4VP ^j nr	5	o/w	Reduction of <i>p</i> - nitroanisole to <i>p</i> - anisidine	Destabilisation/re- emulsification by addition of HCl and NaOH, respectively
80	Water	Various aliphatic hydrocarbons	MgO (300-400 nm	or 1300-2900 nm)	o/w	Knoevenagel condensation reaction	Emulsion stability and catalytic activity of MgO were affected by method of preparation, calcination temp. and

							nature of oil
88	Water	Various	Cellulose nanocrys modified with alkyl particles) decorated w	chains (Janus	o/w	Hydrogenation of nitrobenzene and Suzuki coupling	-
105	Water	Bromooctane	Graphene oxide g polyethylene glycol aminopropyltriethox	(PEG) and 3-	o/w	Production of iodooctane from bromooctane and NaI (nucleophilic substitutions)	-
20	Water	Decalin	Pd/carbon nanotube-i hybrid nanoparticle		w/o	Hydrodeoxygenatio n of a phenolic compound and hydrogenation and etherification of an aldehyde	Consecutive reaction: sequence of Pd- catalysed hydrogenation paired with a preceding aldol condensation
15	Phosphate buffer	Hexane	Partially hydrophobic SiO ₂ modified with methyltrimethoxysilan (40-60 nm)		w/o	Hydrolysis kinetic resolution of racemic esters	-
22	Phosphate buffer	Toluene	Hydrophobic SiO ₂ nanoparticles (50, 120 and 230 nm) and mesoporous silica particles (120 nm)		w/o	Esterification reaction between 1- hexanol and hexanoic acid	Cross-linking of particles at droplet interface with TEOS ^k
49	Phosphate buffer	Paraffin oil	Lipase from <i>Pseudomonas cepacia</i> immobilized on mesoporous SiO ₂ (350- 450 nm) modified with silylating agents of different chain lengths		w/o	Tributyrin hydrolysis	Emulsion prepared with particles of intermediate wettability displayed highest stability and conversion
54	Water	Cyclopentyl methyl ether,	SiO ₂ (20 nm)	CALA ¹	w/o	Transesterification of 1-phenyl ethanol	Continuous flow reaction

		methyl tert- butyl ether or toluene				with vinyl butyrate	
55	Water	Toluene	Partially hydrophobic SiO ₂ modified with methyltrimethoxys ilane (40-60 nm)	Various: H ₂ SO ₄ , HPA ^m and CALB ^a	w/o	Addition reaction, ring opening of an epoxide, kinetic resolution of racemic esters	Continuous flow reaction
56	Water	Heptane or methyl tert- butyl ether	SiO ₂ hydrophobized with TMODS ⁿ (140 nm)	CALA, ¹ CALB ^a and benzaldehyde lyase from <i>Pseudomonas</i> <i>fluorescens</i> Boivar I	w/o	Esterification of 1- octanol and octanoic acid and stereoselective condensation of benzoins	_
57	Water	Heptane or dodecane	$\begin{array}{c} \text{Fe}_{3}\text{O}_{4} \text{ on } \text{SiO}_{2} \\ \text{(~220 nm)} \end{array}$	Lipase from <i>Candida sp.</i> expressed in <i>Aspergillus niger</i>	w/o	Esterification of 1- hexanol with hexanoic acid	-
58	Water	Toluene	500		w/o	Esterification of 1- hexanol and hexanoic acid	-
59	Phosphate buffer	Toluene	Lipase from <i>Candida sp.</i> immobilized onto periodic mesoporous organosilica (1.5 µm)		w/o	Esterification of oleic acid with ethanol	-
61	Phosphate buffer	Hexane	Mesoporous SiO ₂ containing either lysozyme or lipase from <i>Pseudomonas</i> <i>cepacia</i> (2-6 μm)		w/o	Hydrolysis of triacetin and kinetic resolution of (<i>R</i> , <i>S</i>)- 1-phenylethanol with vinyl acetate	Recyclability is not ideal as activity decreases after each cycle
62	Phosphate	Cyclohexane	CALB ^a immol	oilised on SiO ₂	w/o	Esterification and	-

	buffer		nanoflowers modif (500			transesterification for biodiesel production	
63	Water	Decalin	Zeolite modified with OTS ^p (~500 nm)		w/o	Alkylation of <i>m</i> - cresol with 2- propanol	-
65	Water	Toluene	Partially hydrophobic SiO ₂ (40-60 nm) H ₃ PW ₁₂ O ₄₀ (HPA ^m)		w/o	Cyclization of citronellal	Continuous flow reaction
66	Water	Toluene	Partially hydrophobic SiO ₂ modified with methyltrimethoxys ilane (130-200 nm)	HCl and NaBH ₄	w/o	Deacetalization- reduction, deacetalization – Knoevenagel, deacetalization–He nry and diazotization–iodiz ation cascade reactions	Cascade reactions
67	H ₂ SO ₄ and EDA ^q in water	Toluene	SiO ₂ modified with methyltrimethoxys ilane (60-80 nm)	H ₂ SO ₄ , EDA ^q	w/o	Deacetalization- Knoevenagel cascade reaction	Sol-gel process with TMOS ^r to reinforce droplets
69	Water	Ethyl acetate	Pd on SiO ₂ modified with (MeO) ₃ SiCH ₂ CH ₂ CH ₂ (NHCH ₂ CH ₂) ₂ NH ₂ and (MeO) ₃ Si(CH ₂) ₇ CH ₃ (50-60 nm)		w/o	Hydrogenation of unsaturated compounds	Destabilisation/re- emulsification by addition of HCl and NaOH, respectively
71	Water	Decalin	Pd/Al ₂ O ₃ coated wit acids of various alky not g	e .	w/o	Vanillin hydrodeoxygenatio n	-

72	Water	Cinnamaldehyd e	Pd(8-10 nm)/silica graphene oxide		w/o	Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehy de	-
73	Water	Toluene	$[C_{18}/SO_{3}H]@SiO_{2} (15 nm) and [C_{12}]_{3}[PW_{12}O_{40}]^{s} (35 nm) mixtures$		w/o	Oxidative cleavage of cyclohexene oxide for synthesis of adipic acid	One-pot reaction. Other cycloalkene oxides, nanoparticles and organic solvents also tested
74	Water	Decalin	Rh/carbon nanotub 10-20	bes $(1 = 1-2 \ \mu m, d = 1 \ 0 \ nm)$	w/o	Hydrodeoxygenatio n of vanillin	-
16	Water	Toluene	5	Pd/triamine-octyl-bifunctionalized SiO ₂ (250-350 nm)		Reduction of <i>m</i> -nitrotoluene	-
77	Water	Toluene	Pd loaded onto carb	on spheres (160 nm)	w/o	Hydrogenation of unsaturated aromatic compounds	-
90	Tris-HCl buffer	Hexane	Lipase-immob microparticles coa TiO ₂ nanopart	e	w/o	Esterification of hexanoic acid and 1-hexanol	Microparticles prepared through alginate gelation <i>via</i> coalescence of two w/o emulsions
83	Water	Isooctane	Multi-walled carbon nanotubes (w. ~200 nm), graphene and Ag ₃ PO ₄ (~ 80 nm)/BiPO ₄ (l. ~200 nm, d. ~80 nm) composites		w/o	Photocatalytic degradation of Blue 92 dye	-
99	Triethanolami ne hydrochloride buffer	Methyl- <i>tert-</i> butyl ether	Negatively chargedAlcohol dehydrogenaseP(NiPAM-co- MAA)t microgel, copolymerfrom Lactobacillus brevis		w/o	Reduction of acetophenone to (<i>R</i>)-phenylethanol	Destabilisation by increasing temperature above VPTT ^v of microgel. The coupled reaction of 2-propanol

			P(NiPAM-co- NiPMAM) ^u microgel and PNiPAM- PNiPMAM core- shell microgel (200 nm in swollen state)					to acetone is used to regenerate the co-factor NADPH
100	Water	Toluene	microgel contain Candida sp. expres	SiO ₂ (~ 10 nm) and PDEAEMA ^w microgel containing lipase from andida sp. expressed in Aspergillus niger (1-2 μm)		w/o	Esterification of 1- hexanol with hexanoic acid	pH change induces swelling/shrinking of microgel
116	Water	Decalin	Metal (Pd, Pt, Ni) oxides fused to functionalized carbon nanotubes (l. ~ 100 nm)		w/o	Simultaneous condensation and hydrogenation of short biomass- derived oxygenates	Multi-step reaction	
30	Water	Toluene	Titanate nanotubes modified with CH ₃ Si(OCH ₃) ₃ (l. 100 – 400 nm, w. 4 – 7 nm)	Titanate nanotubes containing Ru nanoparticles (2 – 3 nm) in the interior of the hollow tubular structure		w/o	Selective hydrogenation of α,β-unsaturated aldehydes	-
21	ZnSO ₄ ·7H ₂ O in water	Benzene	TiO ₂ nanoparticles modified with (MeO) ₃ SiCH ₃ (21 nm)		Ru/TiO ₂	o/w and w/o	Selective hydrogenation of benzene to cyclohexene	Impact of emulsion type, droplet diameter, inter-droplet distance and temperature
29	Phosphate buffer	Dodecane	SiO ₂ particles of va hydrophilicities (20		Aldoxime dehydratase (OxdB)	o/w and w/o	Dehydration of <i>n</i> -octanaloxime	Compared reaction rate and extent in both emulsion types

				overexpress			
			D1/ 1 : 1	ed in <i>E. coli</i>		TT 1 1	
50	Water	Decalin	Pd/carbonaceous microsph	eres (1.5-2.5	o/w or w/o	Hydrodeoxygenatio n of vanillin	-
			μm)			Benzoin	
						condensation	
						reaction between	
						two benzaldehyde	
						molecules,	
						generation of H_2O_2	
107	Water	Cyclopentyl	P(NIPAM) polymer grown	n on enzyme	o/w and	from glucose and	Various cascade
107	vv ater	methyl ether	(various)		w/o	subsequent	reactions
						production of	
						methyl pentyl	
						sulfoxide and	
						production of	
						cyclohexene	
			Alcaligenes faecalis cells			Hydrolysis of	Magnetically-controlled
			porous calcium phosphate mineral shell		o/w and	hydrophobic (<i>R</i> , <i>S</i>)-	reversible
109	Water	Toluene	and Fe ₃ O ₄ nanoparticles		W/O	mandelonitrile to	disassembly/assembly
			monododecyl phosphate th			hydrophilic <i>R</i> -(–)-	of particles at interfaces
			on mineral shell (~ :	5 µm)		mandelic acid	
			Dendrimer-like mesopo	rous SiO ₂		Hydrolysis of <i>p</i> -	
		V	modified with octyl, amin	-	- /1	nitrophenyl	
110	Water	Various organic solvents	groups containing differe	nt catalytic	o/w and w/o	butyrate, H_2O_2 oxidation of (2-	-
		solvents	groups (peptide, metal co	mplex and	W/0	chloroethyl)ethyl	
			DNAzymes) (90 1	nm)		sulfide	
		Dishlanan atl	TEMPO ^x immobilised in I	P((TMA-co-	/1		Destabilisation/re-
114	Water	Dichlorometha	DMA)-b-MMA) ^y or in I		w/o and	Alcohol oxidation	emulsification by
		ne	MMA) ^z (20-90 n	m)	o/w		addition of CO ₂ and N ₂ ,

							respectively
101	Water	Various oils	Lipase from <i>Candi</i> on on chitosan nar	e	o/w and w/o	Hydrolysis of <i>p</i> - nitrophenyl palmitate and triglycerides	-
84	Water	Dodecane	Ni/carbon nano	otubes (7.4 nm)	o/w and w/o	Hydrogenation of furfural	-
36	Aqueous dextran (500 kDa)	Aqueous polyethylene glycol (PEG, 8 kDa)	Methoxy PEG-urease conjugate particles (200-500 nm) Denatured methoxy PEG- urease conjugate Urease particles (200-500 nm)		Dextran- rich/PEG- rich	Hydrolysis of urea to ammonium carbonate	-
37	Aqueous dextran (10 kDa)	Aqueous PEG (8 kDa)	Clay particles (kaolinite, montmorillonite and illite) (0.5-1.6 μm)		Dextran- rich/PEG- rich	Reaction of <i>o</i> - phenylenediamine with hydrogen peroxide to form 2,3- diaminophenazone	-
38	Aqueous dextran (10 kDa)	Aqueous PEG (8 kDa)	PEGylated lipos	omes (~130 nm)	Dextran- rich/PEG- rich	Ribozyme cleavage using a two-piece hammerhead ribozyme	-
48	1-Dodecene	[BMIM]BF ₄ ^{aa} or water	Non-porous and dendriticRh-sulfo-xantphosmesoporous SiO2Rh-sulfo-xantphosmodified withC18Nab(~ 100 nm)		IL/o and w/o	Hydroformylation of 1-dodecene	Continuous flow reaction
43	Toluene	[BMIM]BF4 ^{aa}	H ₃ PW ₁₂ O ₄₀ (HPA ^m) immobilised on poly(1-vinyl-3-ethylimidazolium		IL/o	Acylation of toluene with acetic	Continuous flow reaction

			bromide) functionalised silica@PS ^{ac} /PDVB ^{ad} Janus particles (500 nm)			anhydride	
45	[BMIM]BF4 ^{aa}	TMSCN ^{ae} in octane	Hydrophobic SiO ₂ (40-60 nm)	[BMIM]Claf	IL/o	Cyanosilylation of carbonyl compounds	Continuous flow reaction
46	[BMIM]PF ₆ ^{ag} , [BMIM]BF ₄ ^{aa} and water	Octane	Hydrophobic SiO ₂ (20 nm)	Various: CALB, ^a Cr ^{III} (salen), [Pd(OAc) ₂]	IL/o	Kinetic resolution of alcohols, asymmetric ring opening of epoxides and Tsuji- Trost reaction	Interfacial sol-gel process to grow a crust around IL droplets after emulsion preparation. Continuous flow reactions
47	Octane	[BIMIM]PF ₆ ªª	DCDMS ^o -modified SiO ₂ (40-60 nm)	CALB ^a (also CuI)	IL/o	Enantioselective trans-esterification of alcohols (also azide-alkyne cycloaddition)	Continuous flow reaction
51	Dodecyl aldehyde	Ethylene glycol	Activated charcoal function phenyl sulfonic groups		Dodecyl aldehyde/e thylene glycol	Acetalization of dodecyl aldehyde with ethylene glycol	Multistep reaction <i>via</i> hemiacetal intermediate
52	Glycerol (g)	Dodecanol (d)	PS ^{ac} -grafted SiO ₂ bearing sulfonic acid centers (45-79 nm)		g/d, d/g and d/g/d	Etherification reaction of glycerol with dodecanol	Dodecanol conversion lower in d/g emulsions than in d/g/d and selected g/d emulsions
53	Vegetable oil	Methanol (MeOH)	SiO ₂ functionalised with alkyl chains and active propylsulfonic acid residues (~7 nm)		MeOH/o	Transesterification of vegetable oils with MeOH	-
70	1-dodecyl aldehyde	Ethylene glycol	Amphiphilic SiO_2 bearing alkyl and propylsulfonic acid groups (150-300 nm)		Dodecyl aldehyde/e thylene	Acetalization of immiscible long chain fatty	-

				glycol	aldehydes with ethylene glycol	
23	Ethylene glycol	Dodecanal	SiO ₂ nanoparticles modified with propylsulfonic acid groups and octyl chains (90-460 nm) with different surface roughness	Ethylene glycol/dod ecanal	Acetalization reaction between dodecanal and ethylene glycol	-
115	Water	Ethyl acetate	Au nanoclusters/Sodium caseinate (micelles, 20-40 nm)	Ethyl acetate/w	Hydrogenation of p-nitroaniline	Emulsification/demulsif ication is pH dependent. Cyclability maintained over 100 cycles

^a CALB: Candida Antarctica lipase B

^b HIPE: High internal phase emulsion

^c Rh-TPPTS: Rhodium-tris(m-sulfonatophenyl) phosphine

^d Halloysite: Natural clay. Aluminosilicates with a molecular formula of $Al_2Si_2O_5(OH)_4 \cdot nH_2O$. These have a tubular shape with silica tetrahedra outside and aluminium oxide octahedra inside

^e HDPA: Hexadecylphosphate acid

^f 8A PEG-CD: Cyclodextrin functionalized 8-arm poly(ethylene glycol)

^g 8A PEG-Fc: Ferrocene functionalized 8-arm poly(ethylene glycol)

^h ZIF-8: Zeolitic-imidazolate framework-8

ⁱ PEO: Poly(ethylene oxide)

^j P4VP: Poly(4-vinylpyridine)

^k TEOS: Tetraethyl orthosilicate

¹CALA: *Candida Antarctica* lipase A

^m HPA: Heteropolyacid

ⁿ TMODS: Trimethoxy(octadecyl)silane

^o DCDMS: Dichlorodimethylsilane

^p OTS: Octadecyltrichlorosilane

^q EDA: Ethylenediamine

^r TMOS: Tetramethoxysilane

 s [C₁₂]₃[PW₁₂O₄₀]: Dodecyltrimethylammonium phosphotungstate

^t P(NiPAM-*co*-MAA): Poly(*N*-isopropylacrylamide-*co*-methacrylic acid)

^u P(NiPAM-co-NiPMAM): Poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) copolymer

^v VPTT: Volume phase transition temperature

^w PDEAEMA: Poly(2-(diethylamino)ethyl methacrylate)

^x TEMPO: 2,2,6,6-Tetramethylpiperidine-1-oxyl

^y P((TMA-co-DMA)-b-MMA): poly((2,2,6,6-tetramethylpiperidine-1-oxyl-4-methacrylate-co-(2-(dimethylamino) ethyl methacrylate))-b-methyl methacrylate)

^z P(TMA-b-MMA): poly(2,2,6,6-tetramethylpiperidine-1-oxyl-4-methacrylate-b-methyl methacrylate)

^{aa} [BMIM]BF₄: 1-Butyl-3-methylimidazolium tetrafluoroborate

^{ab} C18N: Dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride

ac PS: Polystyrene

^{ad} PDVB: Polydivinylbenzene

^{ae} TMSCN: Trimethylsilyl cyanide

^{af} [BMIM]Cl: 1-Butyl-3-methylimidazolium chloride

^{ag} [BMIM]PF₆: 1-Butyl-3-methylimidazolium hexafluorophosphate