Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2020

Supplementary Material: Coarse-grained nucleic acid - protein model
for hybrid nanotechnology

Jonah Procyk®, Erik Poppleton®, Petr Sulc®

“School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign
Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA

Overview

This Supplement introduces the file formats and parameters required to run simulations of the ANM-oxDNA models that are
available in the anm-0xDNA repository athttps://github.com/sulcgroup/anm-oxdna. There are 6 new types
of interactions and these are:

1. DNANM: Simulates DNA and Proteins in system, Uses 0xDNA2 model for DNA and classic ANM for proteins
e Available Options: Sim Types: (MC, MD), GPU Version: Yes

2. RNANM: Simulates RNA and Proteins in system, Uses 0xRNA2 model for RNA and classic ANM for proteins
e Available Options: Sim Types: (MC, MD), GPU Version: Yes

3. DNACT: Simulates DNA and Proteins in system, Uses 0xDNA?2 model for DNA and ANMT for proteins
e Available Options: Sim Types: (MC, MD), GPU Version: Yes

4. RNACT: Simulates DNA and Proteins in system, Uses 0xDNA?2 model for RNA and ANMT for proteins
e Available Options: Sim Types: (MC, MD), GPU Version: Yes

5. AC: Simulates Proteins alone, Uses classic ANM for proteins
e Available Options: Sim Types: (MC, MD), GPU Version: No

6. ACT: Simulates Proteins alone, Uses ANMT for proteins

e Available Options: Sim Types: (MC, MD), GPU Version: No

All hybrid Models (DNANM, RNANM, DNACT, or RNACT) are capable of simulating systems consisting of just proteins,
just DNA/RNA, or proteins and DNA/RNA. The models currently to not support a system which features both DNA and RNA
at the same time.

Preparing a Simulation

Four files are required for any of the new Interactions: the Input file, Parameter file, Topology file, and the Configuration (or
dat) file. The one unique file for every simulation involving the protein model is the Parameter File. If no protein is in the
simulation, simply set ’parfile=none’ in the input file.

The Recommended Method to prepare a system for simulation is to use our scripts available in the /ANMUtils direc-
tory inhttps://github.com/sulcgroup/anm-oxdna. To see examples of our scripts in preparing simulation files
make sure to check out the /examples directory in /ANMUJtils. A brief overview of the scripts is provided below.

Each of the following subsections will cover the composition of each file type necessary for a simulation and their specific
options.

https://github.com/sulcgroup/anm-oxdna
https://github.com/sulcgroup/anm-oxdna

Topology File

The general format of the standard oxDNA topology file is preserved with the addition of this model, albeit with a few caveats.
The most important consideration is that the protein strands must all be declared together. They must be declared either before
or after the declaration of all DNA or RNA particles. To declare a Protein strand the strand id must be negative and starts from
-1 decrementing 1 per each additional protein strand. The base ids are almost the same as the standard oxDNA format, except
the one letter code for each Amino Acid is supported in the base field. In the model’s current implementation the amino acid
identity is arbitrary as any choice has the exact same parameters.

In the general oxDNA format, the 3’ and 5’ neighbors are listed directly after the base field. The same holds true for
proteins except the 3’ neighbor corresponds to the N-terminus neighbor and the 5’ neighbor corresponds to the C-terminus
neighbor. Unlike the original oxDNA format, Protein neighbors aren’t limited to their N-terminus and C-terminus neighbors.
All connections in the Anisotropic Network are defined in the topology file.

To account for this, the index of each amino acid (with a higher index than the particle being declared) bonded to the parti-
cle being declared must be listed after the N-terminus and C-terminus neighbors. One major change from the typical oxDNA
format is the header line of the file. Usually its just two numbers with the number of strands and total particles. However,
for any hybrid model five numbers are needed. The first two are the familiar number of strands and total number of particles.
The next three are: the number of DNA/RNA particles, the number of protein particles, and the number of DNA/RNA strands
respectively. If either DNA/RNA or protein is absent from the simulation, the simulation will run regardless as long as 0’s are
properly placed in the header fields.

Topology File Header Examples
e Simulation containing just DNA:
#Example: One 14mer strand of DNA header
1 14 14 0 1
e Simulation containing just a protein:
#Example: One 104 residue protein header

1 104 0 104 0O

e A hypothetical 2 DNA particles and 3 Protein residues hybrid Topology file:

25231 #header

-1V -112 #Particle 0, AA Valine bonded to neighbors 1 & 2
-1 A0 2 #Particle 1, AA Alanine bonded to neighbors 0 & 2
-1 T1 -1 #Particle 2, AA Threonine bonded to neighbor 1

1 A-15 #Particle 4, DNA Adenine bonded to particle 5

1 G4 -1 #Particle 5, DNA Guanine bonded to particle 4

e Switching the Order of the DNA and Protein residues makes no difference, so the below shows the same system with a
different topology format:

25231 #header

1 A-11 #Particle 0, DNA Adenine bonded to particle 1

1 GO0 -1 #Particle 1, DNA Guanine bonded to particle 0O

-1V —-134 #Particle 2, AA Valine bonded to neighbors 3 & 4

-1 A2 4 #Particle 3, AA Alanine bonded to neighbors 2 & 4

-1 T 3 -1 #Particle 4, AA Threonine bonded to neighbor 3
Input File

There are three different options for running any hybrid simulation (CUDA, MD CPU, MC CPU). All three require the inter-
action type field in the input file to be set to their respective Interaction name ex. "DNANM”.

The CPU backend (MD or MC) requires no Interaction specific options except for the one required key “parfile =" which
must be set to the Parameter File (see next section) or ‘none’. The 'none’ option should only be used when there is no protein
present in the system you are trying to simulate.

For CUDA hybrid Interactions, all of the requirements for the CPU backend still stand. However, additional parameters in the
input file are required to use CUDA as your simulation backend. In addition not all CUDA options implemented in oxDNA
are currently supported. Currently you must use a Verlet List as well as an edge based approach. The required options as
written in an Input File are listed below:

backend = CUDA
CUDA _Sort_Every = 0
CUDA _list = verlet
use_edge = 1
edge_n_forces = 1

An additional option you have with the CUDA Backend is a backend precision of mixed. This is faster than backend precision
double while being almost as precise. To enable this use the following:

backend_precision = mixed

Parameter File

The Parameter file lists the necessary parameters for each spring potential in the network. Specifically it identifies the indices
of the particles, their equilibrium distance, and their spring constant. Using the ANMT model changes this format slightly as
shown later.

No matter what, the first line of the parameter file is a single number corresponding to the number of protein particles in the
system. All lines under that follow this format with each field separated by a single space:

particle_i_index
particle_j_index
potential_type
equilibrium_distance
spring_constant

R O R S R

Example Parameter File for a system of 2 Protein Particles with a connection between Protein Particles 0 and 1 looks like
this:

2
1 25s 1.02 5.0

Here are some important considerations concerning each field of the parameter file:

e The particle indexes are the same as those in the topology file. When listing a bond, index i is always less than index j.
Keeping this notation ensures each bond is accounted for only once.

e The only potential type currently supported is the spring potential. The character s needs to be in this field.

e The equilibrium distance is the distance between the a-Carbons at index i and index j. This is calculated from the PDB
coordinates and is in simulation distance units (1 unit = 0.8518 nm). It must be in float format and non-negative.

e The spring constant will be the same for every bond in the network in the classic ANM. Must be in the form of a float.
Using the HANM or mANM will have unique spring constants. The spring constants calculation is provided in our
scripts. The spring constant value is in simulation units (1 unit = 57.09 pN/nm).

The ANMT model has additional fields on the parameter file. In addition to the 5 shown above, ONLY backbone connections
(denoted by j-index - i_index = 1) have the following fields:

6. 4 Equilibrium Angle Constraints (Floats ranging from —1 to 1)
7. 2 Force Constants for the Bending and Torsional Modulation #OPTIONAL

A couple of notes concerning the additional fields:

e The Equilibrium Angle Constraints are four floats ranging from -1 to 1 separated by a space between each one. Make
sure the correct interaction is being used as an ANM Interaction (DNANM, RNANM) cannot read the parameter file of
an ANMT Interaction (DNACT, RNACT)

e The force constants for the bending and torsional modulation can be declared in two ways. 1) Globally (for all protein
backbone connections) - This is set by using the keys ’bending_k =" and torsion_k =’ in the input file. 2) Per backbone
connection - This is set by adding two numbers to the end of all backbone connections in the parameter file. By default
all ANMT Interactions will assume a global declaration of the force constants if the aforementioned keys are present
in the Input file. The absence of the keys indicates to the program that the force constants should be present in the
parameter file. Either way, the logfile will explicitly tell you where the force constants were found. The force constants
are referred to as kb and kt in the logfile.

Configuration File

Protein Particles have all the same fields as their DNA counterparts. For a detailed description of the configuration file please
see https://dna.physics.ox.ac.uk/index.php/Documentation#Configuration_file

Scripts Overview

The scripts contains a library of python classes and functions to help convert from PDB files into our Model. It also includes
a Modeller implementation for the modelling of missing residues in PDB structures.
The scripts contain 5 classes for building specific structures:

1. ANM - The classic ANM model, the other classes derive from here
2. ANMT - ANM with bending/torisional modulation

3. HANM - Fits B-factors to experimental observed

4. mANM - Multiscale ANM

5. peptide - ANMT implmentation of a Peptide

Below is an example script to demonstrate the Python module’s intended usage:

import models as m
pdbfile = ’/Desktop/tmp/myprotein.pdb’

The first function call should always be to read in information
on the PDB structure via the function get_pdb)\ _info ()

experimental _bfactors , xyz_coordinates = get_pdb_info (pdbfile)
The optional parameter returntype in get_pdb_info can be altered to return information
including sequence, chainids, rigid body side chain vectors and other pdb info
See the examples in the anm—oxDNA /ANMUtils directory for detailed usage
Now we initialize a model using just the coordinates and B factors
our-anm = m.ANM(xyz_coordinates , experimental_bfactors, T=300, cutoff=13)
T is temp in Kelvin at which the protein B factors were determine
Cutoff is the rmax value in Angstroms

#
#
As a guideline , i usually start with 12—13 A and will go up
as high as 18A

+=

!Cutoff values must be set upon initialization , however creating
several models at different rmaxs and comparing is easy!

H

https://dna.physics.ox.ac.uk/index.php/Documentation#Configuration_file

The ANM class serves as a base for the other classes
which all others (except peptide) inherit from

In all classes (except peptide) there is a one—shot function that
automatically evaluates the analytical B—factors for that model.

#For ANM

our_anm.calc_ANM _unitary ()

The above function does the following:

1) Evaluates B—factors via SVD of Hessian

2) Automatically fits the spring constant to best fit with Experimental B—factors
3)Optional ’cuda’ parameter is recommended for large structures (See /ANMUtils)

H H H HF

H*

Using Matplotlib we can plot our calculated B factors vs. the Experimental B factors
our_anm.anm_compare_bfactors(bfactor_comparison_image)

saves figure of compared B factors to filepath bfactor_comparison_image
Alternatively , for a more interactive experience Jupyter Notebook can also be used

See /ANMUtils Setup example for more information on setting up a kernel
and further usage in Jupyter notebook

H*+ H H*

Assuming the B factors match close enough for your system of interest,
we now export our simulation files

For all models, this consists of a single function call

#that uses the model itself as its main argument

m. export_to_simulation (our.anm, pdbfile)

Generates Topology, Configuration, and Parameter File for system

