Electronic supplementary information

Self-assembly of chiral oligo(methylene-*p*-phenyleneethynylene)s into vesicle-like particles independent on hydrophilicity/hydrophobicity of side chains and solvents

Zhiqiang Zhao, Zheng Bian, Yu Chen, Chuanqing Kang, Lianxun Gao and Guangshan Zhu

Table of Contents

- 1. Characterization of foldamers 6a-k
- 2. Chiral HPLC spectra of intermediates 5a-k
- 3. ¹H and ¹³C NMR spectra of the intermediates
- 4. Characterization of Mp-PE tetramer 8h
- 5. Characterization of foldamers 9-10 with disordered R/S chiral units
- 6. Dynamic light scattering diagrams of vesicular assemblies
- 7. SEM images of vesicular assembly **6c** in $CH_2CI_2/n-C_6H_{14}$ at different storage time
- 8. Fluorescence spectra of foldamers 6a-j in different solvent systems
- 9. The statistical data of shell thicknesses of vesicle-like particles^[a]
- 10. Reference

1. Characterization of foldamers 6a-k

4a: yield 86%. [α]_D²⁰ = 60.5 (0.20, THF). M. p.: 83-85 °C. IR (KBr; cm⁻¹): *u*_{max} 3334, 3288, 2950, 2877, 2111, 1915, 1686, 1602, 1581, 1564, 1469, 1462, 1439, 1418, 1391, 1339, 1324, 1286, 1221, 1193, 1114, 1077, 1018, 981, 939, 853, 771, 698, 666. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.46-7.40 (m, 4H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.91 (d, *J* = 7.9 Hz, 1H), 5.73 (s, 1H), 4.21 (s, 1H), 4.06-3.98 (m, 2H), 3.99-3.91 (m, 2H), 3.74 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.69, 151.42, 140.70, 139.10, 132.52, 131.84, 131.23, 127.97, 127.3, 123.01, 121.73, 117.80, 112.86, 102.68, 89.57, 84.34, 83.64, 81.58, 65.34, 51.80, 48.28. ESI-HRMS: m/z 460.1613 ([C₂₉H₂₅NO₄+Na⁺] calcd. 460.1625).

4b: yield 88%. [α]_D²⁰ = 28 (0.20, THF). M. p.: 84-86 °C. IR (KBr; cm⁻¹): *u*_{max} 3375, 3278, 2984, 2956, 2887, 2107, 1921, 1682, 1602, 1521, 1463, 1417, 1389, 1367, 1323, 1275, 1221, 1179, 1112, 1083, 1019, 972, 943, 841, 824, 772, 701, 654, 639. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.46-7.40 (m, 4H), 6.81 (d, *J* = 8.0 Hz, 2H), 5.91 (d, *J* = 8.0 Hz, 1H), 5.78-5.69 (m, 1H), 4.25-4.17 (m, 2H), 4.06-3.99 (m, 2H), 3.98-3.90 (m, 2H), 1.26 (td, *J* = 7.1, 1.5 Hz, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.20, 151.36, 140.71, 139.09, 132.51, 131.84, 131.18, 127.97, 127.37, 123.02, 121.72, 118.10, 112.85, 102.68, 89.58, 84.33, 83.64, 81.58, 65.34, 60.16, 55.39, 48.29, 14.80. ESI-HRMS: m/z 474.1664 ([C₂₉H₂₅NO₄+Na⁺] calcd. 474.1681).

4c: yield 87%. [α]_D²⁰ = 85.5 (0.20, THF). M. p.: 85-87 °C. IR (KBr; cm⁻¹); u_{max} 3376, 3280, 2966, 2882, 2104, 1916, 1682, 1603, 1521, 1470, 1417, 1389, 1313, 1274, 1220, 1202, 1177, 1109, 1082, 1019, 972, 942, 885, 832, 772, 699, 637. ¹H NMR (400 MHz, DMSO- d_6) δ 7.72 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.47-7.37 (m, 4H), 6.81 (d, J = 8.4 Hz, 2H), 5.90 (d, J = 7.9 Hz, 1H), 5.73 (s, 1H), 4.21 (s, 1H), 4.12 (t, J = 6.6 Hz, 2H), 4.07-3.99 (m, 2H), 3.99-3.89 (m, 2H), 1.70-1.64 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.25, 151.37, 140.74, 139.12, 132.51, 131.84, 131.17,

127.96, 127.36, 123.02, 121.71, 118.12, 112.88, 102.69, 89.38, 84.35, 81.54, 65.64, 65.35, 48.31, 22.23, 10.87. ESI-HRMS: m/z 488.1823 ([$C_{30}H_{27}NO_4+Na^+$] calcd. 488.1838).

4d: yield 85%. [α]_D²⁰ = 85.5 (0.20, THF); M. p.: 85-87 °C. IR (KBr; cm⁻¹): u_{max} 3373, 3280, 2955, 2925, 2872, 1917, 1681, 1603, 1521, 1469, 1417, 1385, 1325, 1274, 1220, 1177, 1110, 1083, 1019, 973, 943, 832, 771, 699, 637. ¹H NMR (500 MHz, DMSO- d_6) δ 7.72 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.51-7.38 (m, 5H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.91 (d, *J* = 8.0 Hz, 1H), 5.73 (d, *J* = 1.2 Hz, 1H), 4.17 (t, *J* = 6.4 Hz, 2H), 4.07-4.00 (m, 2H), 3.98-3.90 (m, 2H), 1.67-1.60 (m, 2H), 1.42-1.36 (m, 2H), 0.91 (t, *J* = 7.4, 1.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.24, 151.36, 140.73, 139.10, 132.51, 131.84, 131.17, 127.96, 127.37, 123.01, 121.71, 118.09, 112.86, 102.68, 89.58, 84.33, 83.64, 81.58, 65.34, 63.88, 48.28, 30.88, 19.26, 14.11. ESI-HRMS: m/z 502.1979 ([C₃₁H₂₉NO₄+Na⁺] calcd. 502.1994).

4e: yield 88%. [α]_D²⁰ = 90.5 (0.20, THF). M. p.: 84-86 °C. IR (KBr; cm⁻¹); u_{max} 3374, 3279, 2958, 2927, 2875, 1915, 1681, 1603, 1521, 1469, 1417, 1384, 1326, 1275, 1220,1177, 1110, 1082, 1019, 972, 943, 832, 771, 699, 637. ¹H NMR (400 MHz, DMSO- d_6) δ 7.71 (d, J = 8.4 Hz, 2H), 7.62 (d, J= 8.4 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.46-7.40 (m, 4H), 6.80 (d, J = 8.4 Hz, 2H), 5.90 (d, J = 8.0 Hz, 1H), 5.73 (s, 1H), 4.22 (s, 1H), 4.16 (t, J = 6.4 Hz, 2H), 4.06-3.98 (m, 2H), 3.98-3.91 (m, 2H), 1.71-1.78 (m, 2H), 1.40-1.28 (m, 4H), 0.91-0.84 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.89, 167.22, 139.07, 133.37, 133.28, 132.95, 132.37, 131.96, 130.09, 127.83, 127.04, 113.60, 103.76, 83.68, 78.65, 78.46, 77.85, 65.91, 65.20, 64.31, 50.64, 29.13, 28.84, 22.98, 14.61. ESI-HRMS: m/z 516.2137 ([C₃₂H₃₁NO₄+Na⁺] calcd. 516.2151).

4f: yield 86%. [α]_D²⁰ = 92.9 (0.17, THF). M. p.: 84-86 °C. IR (KBr; cm⁻¹): u_{max} 3371, 3277, 2953, 2926, 2853, 1915, 1677, 1602, 1514, 1466, 1417, 1383, 1324, 1272, 1217, 1176, 1110, 1083, 1017, 973, 941, 928, 769, 699, 637, 568. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.42 (m, 4H), 6.70 (d, *J* = 8.4 Hz, 2H), 5.79 (s, 1H), 5.57 (s, 1H), 4.60 (s, 1H), 4.25 (t, *J* = 6.7 Hz, 2H), 4.13-4.06 (m, 2H), 4.06-3.98 (m, 2H), 3.10 (s, 1H), 1.76-1.69 (m, 2H), 1.44-1.39 (m, 2H), 1.33 (m, 4H), 0.94-0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.32, 150.41, 140.10, 139.02, 133.28, 132.37, 131.96, 127.76, 127.05, 123.62, 122.84, 120.95, 113.39, 103.76, 88.04, 86.07, 83.72, 78.45, 65.90, 65.16, 50.43, 32.10, 29.40, 26.35, 23.17, 14.63. ESI-HRMS: m/z 530.2293 ([C₃₃H₃₃NO₄+Na⁺] calcd. 530.2307). **4g**: yield 87%. [α]_D²⁰ = 63.8 (0.40, THF). M. p.: 86-88 °C. IR (KBr; cm⁻¹): u_{max} 3371, 3277, 2950, 2926, 2857, 1915, 1677, 1597, 1518, 1466, 1414, 1386, 1324, 1272, 1217, 1176, 1110, 1083, 1017, 973, 941, 828, 769, 699, 637, 571. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 11.6 Hz, 2H), 7.61 (d, *J* = 11.2 Hz, 2H), 7.55 (d, *J* =

11.2 Hz, 2H), 7.44 (m, 4H), 6.73 (d,*J* = 11.6 Hz, 2H), 5.81 (s, 1H), 5.59 (s, 1H), 4.27 (t, *J* = 6.6 Hz, 2H), 4.12

(m, 2H), 4.05 (m, 2H), 3.13 (s, 1H), 1.81-1.69 (m, 2H), 1.41-1.25 (m, 8H), 0.91 (t, J = 5.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.31, 150.39, 140.10, 139.02, 133.28, 132.36, 131.96, 127.75, 127.04, 123.60, 122.84, 120.97, 113.38, 103.75, 88.02, 86.07, 83.70, 78.43, 65.90, 65.16, 50.43, 32.35, 29.59, 29.44, 26.64, 23.20, 14.67. ESI-HRMS: m/z 544.2443 ([C₃₄H₃₅NO₄+Na⁺] calcd. 544.2464).

4h: yield 84%. [α]_D²⁰ = 100 (0.33, THF). M. p.: 85-87 °C. IR (KBr; cm⁻¹): u_{max} 3374, 3280, 2954, 2926, 2855, 2105, 1917, 1679, 1602, 1521, 1468, 1417, 1391, 1325, 1274, 1220, 1176, 1112, 1084, 1018, 973, 944, 832, 771, 700, 639. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 11.6 Hz 2H), 7.61 (d, *J* = 11.2 Hz, 2H), 7.55 (d, *J* = 11.2 Hz, 2H), 7.44 (m, 4H), 6.73 (d, *J* = 11.6 Hz, 2H), 5.81 (s, 1H), 5.59 (s, 1H), 4.62 (s, 1H), 4.27 (t, *J* = 6.8 Hz, 2H), 4.18-4.08 (m, 2H), 4.08-3.94 (m, 2H), 3.12 (s, 1H), 1.73 (m, 2H), 1.49-1.20 (m, 10H), 0.96-0.81 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.58, 149.78, 139.53, 138.51, 132.61, 131.68, 131.30, 127.07, 126.35, 122.96, 122.24, 120.47, 112.78, 103.11, 87.43, 85.48, 83.07, 77.72, 65.21, 64.47, 49.86, 31.72, 29.19, 29.11, 28.79, 26.01, 22.54, 13.96. ESI-HRMS: m/z 558.2605 ([C₃₅H₃₇NO₄Na⁺] calcd. 558.2620).

4i: yield 90%. [α]_D²⁰ = 86 (0.36, THF). M. p.: 106-108 °C. IR (KBr; cm⁻¹): *u*_{max} 3346, 3288, 2979, 2883, 2109, 1929, 1676, 1599, 1517, 1442, 1408, 1378, 1361, 1279, 1250, 1177, 1128, 1111, 1068, 1022, 972, 821, 774, 699. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.89 (m, 2H), 7.62-7.52 (m, 4H), 7.43 (s, 4H), 6.75-6.69 (m, 2H), 5.80 (s, 1H), 5.58 (s, 1H), 4.68 (s, 1H), 4.44 (t, *J* = 9.6 Hz, 2H), 4.16-3.98 (m, 4H), 3.82 (t, *J* = 9.6 Hz, 2H), 3.74-3.66(m, 2H), 3.61-3.54 (m, 2H), 3.39 (s, 3H), 3.12 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.48, 149.98, 139.44, 138.40, 132.60, 131.70, 131.49, 127.11, 126.41, 122.96, 122.17, 119.69, 112.71, 103.08, 87.41, 85.39, 83.08, 77.87, 71.86, 70.62, 70.50, 69.34, 65.23, 63.55, 58.93, 49.69, 29.63. ESI-HRMS: m/z 524.2048 ([C₃₂H₃₀NO₆-H⁺] calcd. 524.2073).

4j: yield 83%. [α]_D²⁰ = 68.5 (0.35, THF). IR (KBr; cm⁻¹): *u*_{max} 3366, 3288, 2981, 2883, 2109, 1929, 1676, 1600, 1517, 1442, 1408, 1378, 1361, 1279, 1250, 1177, 1128, 1111, 1068, 1022, 972, 821, 774, 699. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.59-7.50 (m, 4H), 7.44-7.38 (m, 4H), 6.69 (d, *J* = 8.4 Hz, 2H), 5.77 (s, 1H), 5.56 (s, 1H), 4.78 (s, 1H), 4.40 (t, *J* = 4.6 Hz, 2H), 4.15-3.96 (m, 4H), 3.79 (t, *J* = 4.8 Hz, 2H), 3.72-3.59 (m, 6H), 3.54-3.50 (m, 2H), 3.35 (s, 3H), 3.11 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.48, 149.98, 139.44, 138.40, 132.60, 131.70, 131.49, 127.11, 126.41, 122.96, 122.17, 119.69, 112.71, 103.08, 87.41, 85.39, 83.08, 77.87, 71.86, 70.62, 70.57, 69.34, 65.23, 63.55, 58.93, 49.69, 29.63. ESI-HRMS: m/z 592.2299 ([C₃₄H₃₅NO₇+Na⁺] calcd. 592.2311).

4k: yield 88%. [α]_D²⁰ = 67 (0.36, THF). IR (KBr; cm⁻¹): u_{max}3375, 3285, 2974, 2936, 2887, 2107, 1918, 1673, 1601, 1521, 1452, 1417, 1383, 1373, 1344, 1324, 1275, 1221, 1179, 1138, 1096, 1079, 1020, 973, 941,

920, 834, 772, 696, 699, 634. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 4H), 6.80 (d, *J* = 8.5 Hz, 2H), 5.91 (d, *J* = 7.9 Hz, 1H), 5.73 (s, 1H), 5.04 (m, 1H), 4.23 (s, 1H), 4.08 – 3.99 (m, 2H), 3.99 – 3.85 (m, 2H), 1.26 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.18, 149.78, 139.58, 138.47, 132.70, 131.80, 131.36, 127.18, 126.47, 123.07, 122.27, 120.81, 112.81, 103.19, 87.51, 85.50, 83.16, 77.85, 67.57, 65.32, 49.88, 22.07. ESI-HRMS: m/z 488.1829 ([C₂₉H₂₅NO₄+Na⁺] calcd. 488.1838)

5a: yield 94%. [α]_D²⁰ = 146 (0.23, THF). M. p.: 80-82 °C. IR (KBr; cm⁻¹): *u*_{max} 3329, 3286, 2951, 2838, 2735, 2108, 1924, 1691, 1602, 1563, 1527, 1497, 1438, 1422, 1407, 1340, 1320, 1284, 1208, 1192, 1176, 1112, 1083, 1017, 964, 841, 827, 770, 698. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.60-7.54 (m, 6H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.62 (s, 1H), 4.62 (s, 1H), 3.87 (s, 3H), 3.13 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.70, 171.43, 156.10, 145.09, 140.84, 137.34, 135.99, 134.86, 132.94, 132.77, 126.59, 122.70, 117.67, 97.61, 88.74, 88.36, 86.38, 56.56, 53.11, 45.39. ESI-HRMS: m/z 416.1246 ([C₂₆H₁₉NO₃+Na⁺] calcd. 416.1263).

5b: yield 95%. $[\alpha]_D^{20} = 74.4 (0.25, THF)$. M. p.: 81-83 °C. IR (KBr; cm⁻¹): u_{max} 3342, 3286, 2979, 2843, 2737, 2107, 1919, 1702, 1602, 1562, 1521, 1414, 1389, 1367, 1276, 1206, 1177, 1107, 1018, 974, 829, 771, 733, 698. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.95 (d, *J* = 10.8 Hz, 2H), 7.84 (d, *J* = 10.8 Hz, 2H), 7.63-7.55 (m, 6H), 6.77 (d, *J* = 10.8 Hz, 2H), 5.62 (s, 1H), 4.33 (d, *J* = 7.2 Hz, 2H), 3.13 (s, 1H), 1.37 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.30, 166.60, 149.64, 138.95, 135.81, 132.79, 132.36, 131.42, 129.51, 128.42, 127.19, 122.53, 120.64, 112.86, 90.95, 84.88, 82.99, 78.04, 60.40, 49.90, 14.44. ESI-HRMS: m/z 430.1406 ([C₂₇H₂₁NO₃+Na⁺] calcd. 430.1419).

5c: yield 94%. [α]_D²⁰ = 104 (0.23, THF). M. p.: 81-83 °C. IR (KBr; cm⁻¹): *u*_{max} 3388, 3286, 2964, 2848, 2743, 2107, 1913, 1704, 1600, 1563, 1524, 1495, 1388, 1345, 1325, 1304, 1272, 1261, 1209, 1173, 1104, 1074, 1016, 937, 848, 931, 768, 750, 696. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.95 (d, *J* = 11.6 Hz, 2H), 7.84 (d, *J* = 10.8 Hz, 2H), 7.63-7.56 (m, 6H), 6.75 (d, *J* = 11.6 Hz, 2H), 5.61 (s, 1H), 4.62 (s, 1H), 4.37-4.18 (m, 2H), 3.12 (s, 1H), 1.76 (m, 2H), 1.12-0.91 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.30, 166.64, 149.76, 138.91, 135.81, 132.79, 132.37, 131.42, 129.50, 128.41, 127.21, 122.55, 112.92, 90.90, 84.92, 82.99, 78.05, 77.26, 66.04, 49.94, 22.22, 10.56. ESI-HRMS: m/z 444.1565 ([C₂₈H₂₃NO₃+Na⁺] calcd. 444.1576).

5d: yield 93%. [α]_D²⁰ = 115 (0.22, THF). M. p.: 81-83 °C. IR (KBr; cm⁻¹): *u*_{max} 3355, 3291, 2954, 2932, 2865, 2743, 2107, 1929, 1701, 1677, 1602, 1564, 1517, 1471, 1414, 1390, 1335, 1324, 1304, 1281, 1261, 1208,

1177, 1115, 1077, 1021, 969, 833, 772, 738, 696. ¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.1 Hz, 2H), 7.63 - 7.56 (m, 6H), 6.75 (d, *J* = 8.4 Hz, 2H), 5.62 (s, 1H), 4.67 (s, 1H), 4.28 (t, *J* = 6.6 Hz, 2H), 3.14 (s, 1H), 1.72 (m, 2H), 1.48 (m, 2H), 0.98 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.30, 166.67, 149.67, 138.98, 135.80, 132.78, 132.36, 131.42, 129.50, 128.43, 127.19, 122.52, 120.63, 112.86, 90.99, 84.88, 83.01, 78.06, 64.31, 49.89, 30.91, 19.33, 13.80. ESI-HRMS: m/z 458.1720 ([C₂₉H₂₅NO₃+Na⁺] calcd. 458.1732).

5e: yield 96%. [α]_D²⁰ = 75.3 (0.30, THF). M. p.: 81-83 °C. IR (KBr; cm⁻¹): *u*_{max} 3352, 3290, 2963, 2927, 2863, 2737, 2107, 1929, 1699, 1677, 1603, 1517, 1463, 1415, 1326, 1309, 1273, 1207, 1178, 1167, 1125, 1079, 1011, 969, 833, 774, 735, 701. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.64-7.52 (m, 6H), 6.76 (d, *J* = 8.4 Hz, 2H), 5.61 (s, 1H), 4.61 (s, 1H), 4.27 (t, *J* = 6.8Hz, 2H), 3.13 (s, 1H), 1.76 (m 2H), 1.41 (m, 4H), 0.93 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.28, 166.80, 149.62, 138.96, 135.94, 132.78, 132.36, 131.41, 129.50, 128.42, 127.17, 122.44, 120.63, 112.85, 84.67, 82.95, 78.03, 64.60, 49.89, 34.49, 28.54, 28.25, 22.38, 14.00. ESI-HRMS: m/z 472.1873 ([C₃₀H₂₇NO₃+Na⁺] calcd. 472.1889).

5f: yield 96%. [α]_D²⁰ = 133.3 (0.30, THF). M.p.: 82-84 °C. IR (KBr; cm⁻¹): *u*_{max} 3346, 3294, 2969, 2927, 2889, 2738, 2107, 1919, 1704, 1598, 1562, 1525, 1504, 1468, 1415, 1389, 1279, 1211, 1173, 1106, 1073, 1016, 974, 832, 770, 728, 701. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.61-7.53 (m, 6H), 6.76 (d, *J* = 8.4 Hz, 2H), 5.61 (s, 1H), 4.26 (t, *J* = 6.7 Hz, 2H), 3.12 (s, 1H), 1.76 – 1.70 (m, 2H), 1.47-1.36 (m, 2H), 1.33 (m, 4H), 0.96-0.82 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.87, 167.25, 150.20, 139.54, 136.39, 133.37, 132.95, 132.00, 130.09, 129.01, 127.77, 123.12, 121.27, 113.45, 91.54, 85.47, 83.58, 78.62, 65.21, 50.49, 32.10, 29.39, 26.35, 23.16, 14.61. ESI-HRMS: m/z 464.2207 ([C₂₈H₂₃NO₃+H⁺] calcd. 464.2226).

5g: yield 94%. [α]_D²⁰ = 98.7 (0.30, THF). M.p.: 82-84 °C. IR (KBr; cm⁻¹): u_{max} 3355, 3291, 2948, 2928, 2855, 2735, 2107, 1925, 1704, 1685, 1602, 1564, 1522, 1505, 1466, 1459, 1445, 1420, 1409, 1389, 1337, 1312, 1302, 1282, 1205, 1178, 1163, 1113, 1083, 1013, 972, 886, 841, 830, 771, 735, 700. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.63-7.51 (m, 6H), 6.74 (d, *J* = 8.8 Hz, 2H), 5.60 (s, 1H), 4.61 (s, 1H), 4.26 (t, *J* = 6.7 Hz, 2H), 3.12 (s, 1H), 1.80-1.65 (m, 2H), 1.47-1.22 (m, 8H), 0.93-0.84 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.89, 167.26, 150.21, 139.53, 136.38, 133.36, 132.94, 131.99, 130.09, 127.78, 123.10, 121.23, 113.47, 91.54, 85.47, 83.59, 78.64, 65.21, 60.98, 50.48, 32.35, 29.58, 29.44, 26.64, 23.20, 14.67. ESI-HRMS: m/z 478.2371 ([C₃₂H₃₁NO₃+H⁺] calcd. 478.2382).

5h: yield 94%. [α]_D²⁰ = 99.1 (0.27, THF). M. p.: 82-84 °C. IR (KBr; cm⁻¹): u_{max} 3360, 3328, 3289, 2954, 2922, 2856, 2743, 2107, 1913, 1705, 1678, 1602, 1562, 1524, 1504, 1466, 1409, 1386, 1342, 1320, 1283, 1204, 1178, 1127, 1080, 1018, 973, 880, 831, 770, 736, 697. ¹H NMR (300 MHz, CDCl₃) δ 10.02 (s, 1H), 7.94 (d, J = 8.7 Hz 2H), 7.84 (d, J = 8.4 Hz 2H), 7.73-7.49 (m, 6H), 6.78 (d, J = 8.4 Hz, 2H), 5.63 (s, 1H), 4.28 (t, J = 6.7 Hz, 2H), 3.14 (s, 1H), 1.75 (m, 2H), 1.54-1.24 (m, 10H), 1.02-0.76 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.36, 166.70, 149.62, 138.95, 135.80, 132.81, 132.38, 131.44, 129.54, 128.43, 127.21, 122.53, 120.66, 112.86, 90.94, 83.00, 78.06, 64.65, 49.88, 31.82, 29.29, 29.23, 28.84, 26.10, 22.67, 14.12. ESI-HRMS: m/z 491.2345 ([C₃₁H₂₉NO₄+Na⁺] calcd. 491.2360).

5i: yield 88%. [α]_D²⁰ = 104 (0.45, THF). IR (KBr; cm⁻¹): *u*_{max} 3363, 3279, 2980, 2883, 2733, 2110, 1925, 1670, 1597, 1520, 1440, 1411, 1376, 1364, 1278, 1263, 1177, 1130, 1106, 1068, 1021, 972, 821, 770, 698. ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.98-7.85 (m, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.64-7.46 (m, 6H), 6.80-6.60 (m, 2H), 5.60 (s, 1H), 4.69 (s, 1H), 4.42 (d, *J* = 4.8 Hz, 2H), 3.80 (d, 4.8 Hz, 2H), 3.76-3.64 (m, 2H), 3.61-3.54 (m, 2H), 3.37 (s, 3H), 3.13 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.35, 166.52, 149.87, 138.94, 135.76, 132.75, 132.35, 131.60, 129.51, 128.42, 127.21, 122.48, 119.99, 112.84, 90.99, 84.85, 83.03, 78.15, 71.93, 70.54, 69.45, 63.64, 59.05, 49.80. ESI-HRMS: m/z 504.1783 ([C₃₀H₂₇NO₅+Na⁺] calcd. 504.1781).

5*j*: yield 83%. $[\alpha]_D^{20}$ = 119 (0.60, THF). IR (KBr; cm⁻¹): u_{max} 3366, 3288, 2981, 2883, 2739, 2109, 1928, 1677, 1600, 1517, 1442, 1408, 1378, 1361, 1277, 1260, 1177, 1128, 1111, 1068, 1022, 972, 821, 777, 699. ¹H NMR (300 MHz, CDCl₃) δ 10.00 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.64-7.53 (m, 6H), 6.73 (d, *J* = 8.7 Hz, 2H), 5.62 (d, *J* = 6.9 Hz, 1H), 4.70 (d, *J* = 6.9 Hz, 1H), 4.43 (t, *J* = 4.8 Hz, 3H), 3.82 (t, *J* = 4.8 Hz, 2H), 3.74-3.63 (m, 6H), 3.58-3.53 (m, 2H), 3.37 (s, 3H), 3.14 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 191.37, 166.51, 149.81, 138.90, 135.75, 132.77, 132.36, 131.60, 129.52, 128.40, 127.21, 122.49, 120.03, 112.82, 90.92, 84.86, 83.00, 78.12, 71.92, 70.59, 69.41, 63.68, 59.04, 49.81, 21.08, 14.22. ESI-HRMS: m/z 548.2040 ([C₃₂H₃₁NO₆+Na⁺] calcd. 548.2049).

5k: yield 92%. [α]_D²⁰ = 101 (0.24, THF). IR (KBr; cm⁻¹): *u*_{max}3358, 3291,2979, 2942, 2743, 2107, 1914, 1703, 1679, 1601, 1580, 1563, 1523, 1507, 1498, 1467, 1421, 1408, 1386, 1373, 1347, 1337, 1313, 1302, 1277, 1206, 1178, 1165, 1145, 1101, 1085, 1020, 973, 919, 842, 829, 773, 734, 700. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.64-7.52 (m, 6H), 6.73 (d, *J* = 8.4 Hz, 2H), 5.62 (s, 1H), 5.22 (m, 1H), 4.59 (s, 1H), 3.13 (s, 1H), 1.34 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

191.32, 149.45, 138.53, 132.60, 132.37,131.37, 129.52, 127.08, 123.53, 112.85, 104.14, 99.99, 67.62, 49.93, 22.07. ESI-HRMS: m/z 444.1561 ([C₂₈H₂₃NO₃+Na⁺] calcd. 444.1576).

6a: yield 60%. [α]_D²⁰ = 103 (0.15, THF). M_n = 3123 g/mol, M_w = 3818 g/mol, PDI = 1.16. IR (KBr; cm⁻¹): *u*_{max} 3357, 2948 , 2217, 1915, 1709, 1605, 1563, 1520, 1506, 1482, 1434, 1412, 1334, 1314, 1279, 1171, 1110, 1082, 1017, 969, 838, 770, 698. ¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.98-7.88 (m, 34H), 7.55-7.46 (m, 80H), 6.75-6.67 (m, 34H), 5.58 (s, 18H), 3.90-3.81 (m, 54H), 3.14 (s, 1H).

6b: yield 55%. [α]_D²⁰ = 124 (0.23, THF). M_n = 4923 g/mol, M_w = 5655 g/mol, PDI = 1.15. IR (KBr; cm⁻¹): *u*_{max} 3357, 2979, 2221, 1912, 1704, 1605, 1520, 1506, 1477, 1411, 1391, 1367, 1314, 1276, 1176, 1107, 1019, 972, 839, 770, 698. ¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 7.96-7.88 (m, 22H), 7.66-7.40 (m, 48H), 6.77-6.72 (m, 22H), 5.58 (s, 12H), 4.37-4.11 (m, 24H), 3.14 (s, 1H).

6c: yield 60%. [α]_D²⁰ = 111 (0.16, THF). M_n = 4719 g/mol, M_w = 5410 g/mol, PDI = 1.15. IR (KBr; cm⁻¹): *u*_{max} 3355, 2966, 2204, 1912, 1704, 1605, 1519, 1507, 1473, 1411, 1389, 1376, 1313, 1273, 1176, 1107, 1083, 1018, 971, 940, 839, 770, 698. ¹H NMR (300 MHz, CDCl₃) δ 10.02 (s, 1H), 8.01-7.80 (m, 18H), 7.66-7.39 (m, 40H), 6.77-7.71 (m, 18H), 5.60 (s, 10H), 4.65-4.58 (m, 10H), 4.27-4.09 (m, 18H), 3.15 (s, 1H), 1.86-1.72 (m, 18H), 1.14-0.98 (m, 27H).

6d: yield 61%. [α]_D²⁰ = 85 (0.15, THF). M_n = 3824 g/mol, M_w = 4461 g/mol, PDI = 1.17. IR (KBr; cm⁻¹): *u*_{max} 3354, 2958, 2872, 2204, 1915, 1705, 1605, 1520, 1467, 1411, 1486, 1311, 1276, 1176, 1106, 1016, 967, 838, 770, 698. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.96-7.83 (m, 22H), 7.62-7.39 (m, 48H), 6.75-6.62 (m, 22H), 5.64-5.51 (s, 11H), 4.58-4.44 (m, 11H), 4.34-4.10 (m, 22H), 3.10 (s, 1H), 1.89-1.62 (m, 22H), 1.45 (m, 22H), 0.96 (t, *J* = 7.4 Hz, 33H).

6e: yield 53%. [α]_D²⁰ = 124 (0.15, THF). M_n = 4668 g/mol, M_w = 5483 g/mol, PDI = 1.17. IR (KBr; cm⁻¹): u_{max} 3347, 2955, 2930, 2204, 1913, 1705, 1604, 1520, 1467, 1411, 1386, 1316, 1272, 1175, 1106, 1017, 968, 887, 837, 769, 697. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.94-7.86 (b, 22H), 7.61-7.37 (b, 48H), 6.74-6.64 (b, 22H), 5.59 (s, 11H), 4.59 (s, 11H), 4.30-4.17 (m, 22H), 3.12 (s, 1H), 1.77-1.68 (m, 22H), 1.44-1.29 (m, 32H), 1.05-0.77 (m, 33H).

6f: yield 62%. [α]_D²⁰ = 81 (0.42, THF). M_n = 4090 g/mol, M_w = 4883 g/mol, PDI = 1.19. IR (KBr; cm⁻¹): *u*_{max} 3358, 2954, 2930, 2204, 1915, 1704, 1605, 1520, 1468, 1412, 1386, 1314, 1273, 1176, 1107, 1018, 975, 838, 770, 698. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.93-7.86 (m, 22H), 7.60-7.40 (m, 48H), 6.74-6.66 (m, 22H), 5.61-5.53 (s, 11H), 4.29-4.22 (m, 22H), 3.11 (s, 1H), 1.76-1.67 (m, 22H), 1.46-1.27 (m, 66H), 0.93-0.85 (s, 33H).

6g: yield 55%. [α]_D²⁰ = 93 (0.22, THF). M_n = 5299 g/mol, M_w = 6249 g/mol, PDI = 1.18. IR (KBr; cm⁻¹): *u*_{max} 3355, 2953, 2928, 2204, 1915, 1705, 1605, 1520, 1506, 1467, 1412, 1386, 1315, 1274, 1176, 1107, 1082, 1018, 970, 838, 770, 6976.¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.95-7.83 (m, 22H), 7.60-7.42 (m, 48H), 6.84-6.57 (m, 22H), 5.75-5.51 (m, 11H), 4.64 (s, 11H), 4.32-4.17 (m, 22H), 3.10 (s, 1H), 1.71 (m, 22H), 1.52-1.27 (m, 88H), 0.90 (m, 33H).

6h: yield 57%. [α]_D²⁰ = 65 (0.19, THF). M_n = 6040 g/mol, M_w = 8714 g/mol, PDI = 1.44. IR (KBr; cm⁻¹): *u*_{max} 3361, 2953, 2927, 2214, 1915, 1706, 1605, 1520, 1467, 1412, 1387, 1314, 1273, 1176, 1108, 1019, 839, 770, 697. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.92-7.83 (m, 26H), 7.58-7.39 (m, 96H), 6.73-6.64 (m, 26H), 5.59-5.51 (s, 13H), 4.60 (m, 13H), 4.28-4.16 (m, 26H), 3.15 (s, 1H), 1.78-1.61 (m, 26H), 1.46-1.18 (m, 130H), 0.91-0.80 (m, 39H).

6i: yield 57%. [α]_D²⁰ = 73 (0.22, THF). M_n = 3233 g/mol, M_w = 3981 g/mol, PDI = 1.23. IR (KBr; cm⁻¹): *u*_{max} 3346, 2927, 2877, 2821, 2583, 2204, 1916, 1701, 1603, 1520, 1504, 1452, 1411, 1356, 1272, 1173, 1101, 1016, 972, 883, 836, 768, 699. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.98-7.78 (m, 20H), 7.64-7.39 (m, 40H), 6.76-6.63 (s, 20H), 5.4-5.51 (m, 10H), 4.53-4.36 (m, 20H), 3.89-3.77 (m, 20H), 3.73-3.62 (m, 20H), 3.60-3.48 (m, 20H), 3.41-3.28 (m, 30H), 3.12 (m, 1H).

6j: yield 50%. $[\alpha]_D^{20} = 69 (0.14, THF)$. $M_n = 3988 g/mol, M_w = 6055 g/mol, PDI = 1.52$. IR (KBr; cm⁻¹): u_{max} 3360, 2947, 2877, 2597, 2223, 1923, 1705, 1606, 1524, 1455, 1411, 1336, 1272, 1177, 1101, 1019, 840, 768, 695. ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.07-7.76 (m, 22H), 7.72-7.36 (m, 48H), 6.89-6.61 (m, 22H), 5.64-5.67 (m, 11H), 4.58-4.32 (m, 11H), 4.01-3.42 (m, 154H), 3.40-3.20 (m, 33H), 3.11 (s, 1H). **6k:** yield 58%. $[\alpha]_D^{20} = 122 (0.20, THF)$. $M_n = 3011 g/mol, M_w = 3632 g/mol, PDI = 1.20$. IR (KBr; cm⁻¹): u_{max} 3355, 2978, 2210, 1915, 1703, 1606, 1519, 1469, 1411, 1386, 1373, 1353, 1334, 1314, 1276, 1176, 1144, 1103, 1018, 972, 920, 840, 771, 698. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.00-7.78 (m, 20H), 7.66-7.38 (m, 40H), 6.77-6.55 (m, 20H), 5.61-5.50 (m, 9H), 5.25-5.07 (m, 9H), 3.11 (s, 1H), 1.42-1.20 (m, 54H).

Fig. S1 The ¹H NMR spectra of foldamers 6a-k in CDCl₃

The weak signal peaks at 8.04 ppm may be ascribed to N-H of imines formed by condensation of terminal aldehyde of foldamer and amino group of 4-aminobenzoate ester.

Fig. S2 Mass spectra of foldamer 6a¹

M_n: molecular formula of **6a**; M_s: 4-methyloxycarbonylanilino segment; n, number of repeat unit.

Fig. S3 Mass spectra of foldamer 6b1

M_n: molecular formula of **6b**; Ms: 4-ethyloxycarbonylanilino segment; M: ethyl 4-aminobenzoate; n, number of repeat unit.

Fig. S4 Mass spectra of foldamer 6c1

M_n: molecular formula of **6c**; Ms: 4-*n*-propyloxycarbonylanilino segment; M: *n*-propyl 4-aminobenzoate; n, number of repeat unit.

Fig. S5 Mass spectra of foldamer 6d1

M_n: molecular formula of **6d**; M_s: 4-*n*-butyloxycarbonylanilino segment; M: *n*-butyl 4-aminobenzoate; n, number of repeat unit.

M_n: molecular formula of **6e**; Ms: 4-*n*-pentyloxycarbonylanilino segment; n, number of repeat unit.

Fig. S7 Mass spectra of foldamer 6f1

M_n: molecular formula of **6f**; M_s: 4-*n*-hexyloxycarbonylanilino segment; M: *n*-hexyl 4-aminobenzoate; n, number of repeat unit.

Fig. S8 Mass spectra of foldamer 6g1

 M_n : molecular formula of **6g**; M_s : 4-*n*-heptyloxycarbonylanilino segment; M: *n*-heptyl 4-aminobenzoate; n, number of repeat unit.

Fig. S9 Mass spectra of foldamer 6h1

Fig. S10 Mass spectra of foldamer 6i1

M_n: molecular formula of **6i**; M_s: 4-(2,5,8-trioxanonanoyl)anilino segment; n, number of repeat unit.

Fig. S11 Mass spectra of foldamer 6j1

M_n: molecular formula of **6***j*; M_s: 4-(2,5,8,11-tetraoxadodecanoyl)anilino segment; n, number of repeat unit.

Fig. S12 Mass spectra of foldamer 6k1

M_n: molecular formula of **6k**; M_s: 4-(*i*-propoxycarbonyl)anilino segment; n, number of repeat unit.

Fig. S13 The GPC curves of foldamers 6a-k

THF was used as the eluent at a flow rate of 1.0 ml/min.

2. Chiral HPLC spectra of intermediates 5a-k

HPLC spectra of racemic standard substance (blue) and compound **5a** before (red) and after (black) recrystallization using CHIRALPAK ID. Eluent: *n*hexane/*i*-propanol = 87/13, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5c** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5e** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5b** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5d** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5f** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (black) and compound **5g** before (red) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (red) and compound **5i** before (black) using CHIRALPAK ID. Eluent: *n*-hexane/CH₂Cl₂/*i*-propanol = 32.5/32.5/25, v/v/v, 0.15 ml/min

HPLC spectra of racemic standard substance (red) and compound **5h** before (black) and after (blue)

recrystallization using CHIRALPAK ID. Eluent: *n*-hexane/*i*-propanol = 85/15, v/v, 1 ml/min

HPLC spectra of racemic standard substance (red) and compound **5j** before (black) using CHIRALPAK ID. Eluent: *n*-hexane/CH₂Cl₂/*i*-propanol = 34.5/34.5/31, v/v/v, 0.2 ml/min

HPLC spectra of racemic standard substance (red) and compound **5k** before (black) and after (blue) recrystallization using CHIRALPAK ID. Eluent: *n*hexane/*i*-propanol = 85/15, v/v, 1 ml/min 3. ¹H and ¹³C NMR spectra of the intermediates

The ¹H (top) and ¹³C NMR (bottom) spectra of **4b** in d_6 -DMSO

The ¹H (top) and ¹³C NMR (bottom) spectra of **4d** in d_6 -DMSO

The ¹H (top) and ¹³C NMR (bottom) spectra of 4f in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **4h** in d_6 -DMSO

The ¹H (top) and ¹³C NMR (bottom) spectra of 4j in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of 4k in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5a** in d_6 -DMSO

The ¹H (top) and ¹³C NMR (bottom) spectra of 5c in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5e** in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5g** in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5h** in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5i** in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5j** in CDCl₃

The ¹H (top) and ¹³C NMR (bottom) spectra of **5k** in CDCl₃

4. Characterization of Mp-PE tetramer 8h.

8h (Yield, 70% for two steps): $[\alpha]_D^{20} = 97.3 (0.25, THF)$. IR (KBr; cm⁻¹): $u_{max} 3363, 2927, 2855, 2219, 1706, 1605, 1521, 1468, 1411, 1273, 1176, 1107, 839, 770. ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 7.97-7.85 (m, 6H), 7.65-7.39 (m, 16H), 6.72-6.69 (m, 6H), 5.63-5.53 (m, 3H), 4.60 (s, 3H), 4.26 (t, J = 6.6 Hz, 6H), 4.12-4.03 (m, 4H), 3.12 (s, 1H), 1.78-1.69 (m, 6H), 1.46-1.29 (m, 30H), 0.89 (t, J = 4.8 Hz, 9H). HRMS (MALDI-TOF) *m/z* 1280.6671. ([C₆₈H₆₁N₃O₈+Na⁺] Calcd 1280.6704).

The diastereomer (*R*,*S*,*R*)-**8h** was prepared using similar methods by *N*-Boc-*D*-proline as catalyst (Yield, 61% for two steps). $[\alpha]_D^{20} = 68.1 (0.36, THF)$. IR (KBr; cm⁻¹): u_{max} 3365, 2930, 2850, 2220, 1705, 1602, 1520, 1467, 1410, 1272, 1175, 1110, 839, 769, 698. ¹H NMR (300 MHz, CDCl₃) δ 7.99-7.84 (m, 6H), 7.63-7.54 (m, 10H), 7.49-7.43 (m, 8H), 6.81-6.64 (m, 6H), 5.63-5.54 (m, 3H), 4.63-4.59 (m, 3H), 4.27 (t, *J* = 6.6 Hz, 6H), 4.18-3.94 (m, 4H), 3.13 (s, 1H), 1.79-1.70 (m, 6H), 1.41-1.19 (m, 24H), 0.96-0.83 (m, 9H). HRMS (MALDI-TOF) *m/z* 1280.6670. ([C₆₈H₆₁N₃O₈+Na⁺] Calcd 1280.6704).

Fig. S14 HPLC analysis of (*R*,*R*,*R*)-8h using CHIRALPAK ID.

Eluent: *n*-hexane/dichloromethane/*i*-propanol (v/v/v) = 40.63/24.37/35, 0.3 ml/min.

The diastereomer (R,S,R)-**8h** was hardly detected by HPLC in the product of (R,R,R)-**8h**. This suggested that the polymerization method to all-R product was reliable.

5. Characterization of foldamers 9-10 with disordered R/S chiral units

9: yield 60%. M_n = 2451 g/mol, M_w = 3311 g/mol, PDI = 1.35. IR (KBr; cm⁻¹): *u*_{max} 3360, 2954, 2924, 2852, 2733, 2106, 1923, 1705, 1666, 1606, 1520, 1465, 1272, 1214, 1173, 1105, 1012, 975, 840, 768, 699. ¹H NMR (300 MHz, CDCl₃) δ 10.08 (s, 1H), 8.05-7.72 (m, 14H), 7.72-7.35 (m, 54H), 6.84-6.49 (m, 14H), 5.66-5.51 (m, 7H), 4.69-4.54 (m, 7H), 4.48-4.01 (m, 14H), 3.13 (s, 1H), 1.86-1.59 (m, 14H), 1.53-1.12 (m, 70H), 0.96-0.77 (m, 21H).

10: yield 60%. M_n = 2761 g/mol, M_w = 3547 g/mol, PDI = 1.29. IR (KBr; cm⁻¹): *u*_{max} 3360, 2877, 2733, 2102, 1701, 1663, 1599, 1524, 1452, 1411, 1272, 1214, 1167, 1098, 1012, 982, 843, 768, 699. ¹H NMR (300 MHz, CDCl₃) δ 10.07 (s, 1H), 8.01-7.74 (m, 14H), 7.70-7.33 (m, 54), 6.90-6.53 (m, 14H), 5.58 (s,7H), 4.67 (s,7H), 4.60-4.26 (m, 14H), 3.90-3.78 (m, 14H), 3.76-3.59 (m, 42H), 3.60-3.45 (m, 28H), 3.44-3.25 (m, 21H), 3.14 (s, 1H).

Fig. S15 The ¹H NMR spectra of foldamers 9 (a) and 10 (b) in CDCl₃

6. Dynamic light scattering diagrams of vesicular assemblies

Fig. S16 Dynamic light scattering diagrams of as-synthesized vesicular assemblies 6a-j (a-j) of 0.02 mg/mL

in CH_2CI_2/n - C_6H_{14} (1/5, v/v) at room temperature.

Fig. S17 Dynamic light scattering diagrams of as-synthesized vesicular assemblies **6a-j** (a-j) of 0.02 mg/mL in CH₂Cl₂/CH₃OH (1/5, v/v) at room temperature.

Fig. S18 Dynamic light scattering diagrams of as-synthesized vesicular assemblies **6h** (a) and **6j** (b) of 0.02 mg/mL in THF/H₂O (1/5, v/v) at room temperature.

Fig. S19 Dynamic light scattering diagrams of as-synthesized vesicular assemblies $\mathbf{6b}$ (a) and $\mathbf{6f}$ (b) in

 CH_2Cl_2/n - C_6H_{14} with the volumetric ratio of 1/3 (black), 1/4 (red) and 1/5 (blue), respectively.

Fig. S20 Dynamic light scattering diagrams of vesicular assemblies **6h** (a) and **6j** (b) of 0.02 mg/mL in THF/H₂O (1/5, v/v) at room temperature. Black line, as prepared; red line, after kept for two weeks; blue line, after dialysis in H₂O.

Fig. S21 Dynamic light scattering diagrams of vesicular assemblies **6h** (a) and **6j** (b) of 0.02 mg/mL in H₂O (1/5, v/v) at room temperature. Black line, after dialysis in H₂O; red line, after kept for two weeks.

7. SEM images of vesicular assembly 6c in CH₂Cl₂/n-C₆H₁₄ at different storage time

Fig. S22 SEM images of vesicular assembly **6c** of different storage time (0, 6, 14, 24, 36 and 96 h) in $CH_2Cl_2/n-C_6H_{14}$ (1/5, v/v) at room temperature. Concentration, 0.02 mg/mL.

8. Fluorescence spectra of foldamers 6a-j in different solvent systems

Fig. S23 Fluorescence spectra of foldamers **6a** (a), **6b** (b), **6c** (c), **6d** (d), **6e** (e), **6f** (f), **6g** (g), **6h** (h), **6i** (i) and **6j** (j) of 0.02 mg/ml in different solvent systems. λ_{ex} , 370 nm.

Fig. S24 Fluorescence spectra of foldamers 6h (a) and 6j (b) of 0.02 mg/ml in THF and THF/H₂O. λ_{ex} , 370 nm

9. The statistical data of shell thicknesses of vesicle-like particles in different solvent systems

Foldamer	$CH_2CI_2/n-C_6H_{14}$	CH ₂ Cl ₂ /CH ₃ OH	THF/H ₂ O	
6a	4.4-6.1 nm	8.1-11.6 nm	-	
6b	4.3-5.6 nm	6.7-9.8 nm	-	
6c	4.3-5.8 nm	6.5-8.3 nm	-	
6d	4.7-7.1 nm	5.2-7.8 nm	-	
6e	4.2-6.3 nm	7.3-10.0 nm	-	
6f	3.9-5.9 nm	1.9-11.0 nm	-	
6g	4.3-6.1 nm	7.1-9.7 nm	-	
6h	4.9-7.2 nm	8.2-11.4 nm	8.6-10.9 nm	
6i	3.9-5.5 nm	8.6-10.2 nm		
6i	4.5-7.3 nm	7.9-10.6 nm	8.3-10.4 nm	

[a] The shell thicknesses of vesicular assemblies of each foldamer were measured ten times using TEM images.

The shell thicknesses of these vesicular assemblies are not evidently relative to side chain length of

foldamers, possibly due to the roughness of uranyl acetate staining method.

10. Reference

1. X. Li, L. Guo, M. Casiano-Maldonado, D. Zhang, C. Wesdeminotis, Macromolecules, 2011, 44, 4555-