
Supporting Information:

Using Reactive Dissipative Particle Dynamics to

Understand Local Shape Manipulation of

Polymer Vesicles

Qinyu Zhu, Timothy R. Scott, and Douglas R. Tree∗∗

Chemical Engineering Department, Brigham Young University, Provo, Utah

E-mail: tree.doug@byu.edu

Description of Parallel Cell List Algorithm

Instead of using a Verlet list of neighboring particles within a certain cut-off radius, we

divide the simulation space into cells of uniform size rc and use a cell list to sort the particles

and count the pairwise interactions.S1 Here we briefly explain the basic concept of cell list

structure using a 2D system, as shown in Figure S1. The cell list structure consists of a

head array and a linked-list array. The system in Figure S1 is divided into nine uniform

cells. Each element in the head array corresponds to one cell and stores the first particle’s

index that belongs to the cell. The elements in the head array also point to the address of

the next particle index in the linked-list array. The elements in the linked-list represent the

particle indices, and also points to the next particle in the same cell, and so on. If we follow

the trace of the linked-list array, we will reach an element of -1, which means that we have

iterated through all the particles in this cell.

S-1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2020

When calculating the pairwise interactions for a particle, one only needs to check the

particles in the same cell and half of the neighboring cells. For example, if we are calculating

the pairwise interaction for particle 7 in Figure S1, we only need to check the particles in

cells 0, 1, 2, and 5. Other pairs that involve particle 7 will be taken into account when we

deal with particles in the other half of the neighboring cells. The cell list needs to be updated

at every time step. The algorithm is efficient in large systems with a computational time

that scales linearly with the number of particles.

0 3 6

1 4 7

2 5 8

0

1

13

2

11

4

9

7

5

12

6 3

8

10

Head

0 2 -1 -1 4 3 13 5 10

1 -1 -1 6 7 12 8

Linked-list

0-6

9 -1 11 -1 -1 -1 -17-13

Figure S1: Demonstration of cell list structure in a 2D system.

However, constructing the cell list using the algorithm above is intrinsically a serial

process, since we need to successively loop through each and every particle in the system to

place them in the right location. Constructing the cell list on the CPU and then transferring

it to the GPU is one less desirable option. This memory transfer process can be the rate-

limiting step for a parallel computation. To avoid this, we used the the compare and swap

function, which is an atomic operation in CUDA,S2 to set up the cell list on GPU. The

pseudocode for this procedure is found in Algorithm 1. To better interpret the algorithm,

we define several functions here that we later refer to in Algorithm 1,

1. Initialize(head, clist): initialize the head array (head) and linked-list array (clist)

and set all the elements in both arrays to -1.

S-2

2. Identify Cell(idx): identify the cell index of a corresponding particle index idx.

3. compare and swap(array[n], old val, new val): check if element array[n] has the

value of old val. If so, then the new val is assigned to this element; otherwise, the

element remain unchanged.

We first initialize the head array and linked-list array on GPU and obtain the thread id

from the GPU, as suggested in the first two lines. Each thread is then assigned to a single

particle, and the cell index that the particle belongs to is identified. In line 5, we use the

compare and swap function to attempt to swap the corresponding element in the head

array with the particle index. If the index is successfully swapped, this thread returns and

proceeds to process the next particle in the queue. Otherwise, we locate the next address

in the linked-list and repeat the compare and swap function until a swap is successful, as

suggested in the while loop from line 10 to line 18.

Algorithm 1 Parallel Cell List Construction

1: Initialize(head, clist)
2: Set idx = threadIdx.x+ blockDim.x ∗ blockIdx.x #Thread id from GPU, also referred

to as the particle index that the thread is processing
3: Set idcell = Indentify Cell(idx)
4: compare and swap(head[idcell],−1, idx)
5: if head[idcel] = idx then
6: return and proceed to next particle
7: else
8: Set swap = True
9: while swap = True do
10: nextid← head[idcell]
11: compare and swap(clist[nextid],−1, idx)
12: if clist[nextid]) = idx then
13: swap = False
14: else
15: nextid← clist[nextid]
16: end if
17: end while
18: end if

S-3

Relaxation Time of the Diblock Copolymer Solution

To characterize the relaxation time, we performed a DPD simulation using the same param-

eters as our polymer vesicle system described in the main text starting from random initial

conditions. We ran the simulation for 5 × 105 steps, and the average radius of gyration

(Rg) was obtained every 50 steps. The normalized autocorrelation function is plotted in

Figure S2, where it shows an initially exponential decay before it becomes noisy due to in-

sufficient statistics. Accordingly, we fit the data from τ = 0 to τ = 20000 using the following

model

lnE(τ) = −τ
θ

(1)

where E is the normalized autocorrelation function of Rg, and θ is the autocorrelation time.

The autocorrelation time obtained from the fit is θ ≈ 1.43× 104 timesteps. As mentioned in

the main text, we typically ran for 1× 106 timesteps for the final equilibration of the vesicle

structure, which is approximately 70× the autocorrelation time. Thus, it is reasonable to

conclude that our final system is effectively relaxed.

0 5000 10000 15000 20000 25000
τ

10−2

10−1

100

⟨R
g⟨
t)R

g⟨
t+

τ)
⟩

⟩ata
Fit

Figure S2: Normalized autocorrelation function of Rg.

S-4

Lateral Diffusion Coefficient of Polymer Chains in the

Vesicle

In the main manuscript, we presented the result of mean squared displacement (MSD) of

DPD solvent beads as a function of time and fitting the data points obtain tracer diffusion

of the solvent SA, DSA = 0.2296 in DPD unit. Here, We performed a similar calculation to

obtain the lateral diffusion coefficient of polymer chains within the vesicle by tracking and

averaging the MSD of center of mass of the polymer chains as a function of time and fitting

the data point to

MSD = 6DLateralt (2)

where DLateral is the lateral diffusion coefficient of the polymer chains in DPD unit. The MSD

is plotted against time in Fig. S3. The fitted lateral diffusion coefficient is DLateral = 0.0073,

which is approximately 30 times slower than that of the individual solvent bead.

0 10 20 30 40 50 60
Time

0.0

0.5

1.0

1.5

2.0

2.5

M
SD

(r c
)

Data
DLateral=0.0073

Figure S3: The MSD of polymer chains as a function of time.

S-5

Run-Time Comparison of DPD and RDPD Codes

In the main text, we show a bar chart that compares the run time of serial and parallel

versions of DPD and RDPD codes. Here we attach the data we used to create the bar chart.

Table S1: Time comparison

Code Version Run Time (min)
Serial DPD 24.62

Serial RDPD with Naive Algorithm 39.21
Serial RDPD with SRBD 32.54

Parallel DPD 1.27
Parallel RDPD with Naive Algorithm 1.60

Parallel RDPD with SRBD 1.43

Validation of SRBD Equilibria at Other Reaction Rates

In the main text, we validate the SRBD equilibrium by simulating the following catalytic

conversion reaction,

SA + E
 SB + E. (3)

where kf = 0.1 and kr = 0.05. Here we show additional sets of forward and reverse reaction

rates that also demonstrate similar equilibria. The simulations started with a random initial

condition of equal mole fractions of A and B. All the simulations have the same forward

reaction rate of kf = 0.1. The reverse reaction rate in Figure S4 a, b, c and d are kr = 0.02,

0.1, 0.2, and 0.5 respectively. The red lines represent the theoretical equilibrium mole fraction

xA for the corresponding reaction rate parameters. In Figure S4, the value of xSA
fluctuates

around the equilibrium mole fraction after t ≈ 1500, in agreement with the expected values

of equilibrium concentration with respect to the various sets of forward and reverse reaction

rates.

S-6

Figure S4: Mole fraction xSA as a function of time for reversible catalytic reactions at kf = 0.1
and (a) kr = 0.02, (b) kr = 0.1, (c) kr = 0.2, (d) kr = 0.5.

Characterizing the monomer conversion in Fig. 12

To better demonstrate the process of dynamically changing polymer chemistry, as shown

in Fig. 12 in the main text, we ran 20 replicates of the corresponding RDPD simulation,

and plotted the number of converted B beads against the simulation time in Fig. S5. As

suggested by the trend of the curve, the conversion rate slowly decreases as the reaction

proceeds, which is reasonable because the consumption of reactants would decrease the

probability of successful collision that leads to the chemical reactions. On average, 3681 B

particles were converted at the end of the reaction (at t = 500).

S-7

0 100 200 300 400 500
Time

0

500

1000

1500

2000

2500

3000

3500

Nu
m
be

r o
f c

on
ve

rte
d
B
be

ad
s

Figure S5: Number of B beads converted as a function of time.

Details of the Calculation of the Vesicle Curvature

As discussed in the main text, we estimated the vesicle curvature to show that the defor-

mation occurs locally. The snapshots of the vesicle structure before and after dynamically

changing the solvophobicity of B blocks were projected onto the Y-Z plane since the SA′

particles were placed symmetrically with respect to the X and Z axes. The 2D space was

divided into equally spaced grid points with a bin size of 0.5 in both directions. To get a

smoother surface for a more accurate curvature estimation, we removed the A blocks in the

outer corona, and we averaged the coordinates over 100 snapshots. Additionally, to further

reduce the noise amplitude in the density calculation each particle was treated as a Gaussian

distributed density pulse

f(y, z) = A exp(−(
(y − y0)2

2σy2
+

(z − z0)2

2σz2
)) (4)

S-8

where y and z represent the grid point, and y0 and z0 are the coordinates of the particles.

The amplitude was set as A = 1, and σy = σz = 1. A threshold between 0.5 and 75 was

applied to obtain the grid points constituting the outer layer of the projection. The alpha

shapes, which describe the boundary that envelops a set of points, were then defined with

α = 2.0 to obtain the outlines of the projection for curvature estimation.S3 The curvatures

of the 2D projection were estimated after parameterizing this curve as γ(s) = (y(s), z(s))

where s is a circumferential index. We then define a curvature asS4

κ =

∣∣∣∣∣ y′z′′ − z′y′′

[(y′)2 + (z′)2]3/2

∣∣∣∣∣ (5)

where κ is the absolute curvature, y′ = dy/ds, z′ = dz/ds, y′′ = d2y/ds2, and z′′ = d2z/ds2,

respectively. The first and second derivatives in Eq. 5 were calculated based on a third order

polynomial that was fit locally using a Savitzky–Golay filter with a window length of 23.S5

S-9

References

(S1) Allen, M.; Tildesley, D. Computer Simulation of Liquids ; Oxford science publications;

Clarendon Press, 1987.

(S2) Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel programming with

CUDA. Queue 2008, 6, 40–53, DOI: 10.1145/1365490.1365500.

(S3) Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the

plane. IEEE T Inform Theory 1983, 29, 551–559, DOI: 10.1109/TIT.1983.1056714.

(S4) Kobayashi, S.; Nomizu, K. Foundations of differential geometry ; New York, London,

1963; Vol. 1.

(S5) Savitzky, A.; Golay, M. J. Smoothing and differentiation of data by simplified least

squares procedures. Anal Chem 1964, 36, 1627–1639, DOI: 10.1021/ac60214a047.

S-10

