[Electronic Supplementary Information]

Controlling Nanostructure and Mechanical Properties in Triblock Copolymer/Monomer Blends via Reaction-Induced Phase Transitions

Vincent M. Torres,^a Jacob A. LaNasa,^b Bryan D. Vogt,^c and Robert J. Hickey^{b,d,*}

^aDepartment of Chemistry, ^bDepartment of Materials Science and Engineering, ^cDepartment of Chemical Engineering, ^dMaterials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16801, United States

Macromolecular Characterization using NMR and SEC

¹H NMR was used to determine critical molecular characteristics such as PS wt% and ratio of 1,2 vs 1,4 PBD content in the SBS triblock copolymer. The PS wt% was calculated to be 35%, which by using bulk densities of 1.04 g cm⁻³ for PS and 0.91 g cm⁻³ for PBD, the resulting density of the SBS triblock was calculated to be 0.95 g cm⁻³. Similarly, the dn/dc value of the polymer was approximated using the PS wt% by using dn/dc values of 0.185 for PS and 0.13 for PBD, resulting in a dn/dc to be approximately 0.1495. It was determined that the SBS triblock was 89% 1,4- PBD. By using the above dn/dc value, the number-average molecular weight (M_n) of the copolymer was determined to be 62 kg mol⁻¹.

Figure S1. 500 MHz ¹H NMR spectrum for $\phi_{SBS} = 100\%$. The PS wt% was calculated by comparing the relative mole amounts for PS and PBD. The relative 1,4 vs 1,2- PBD content was calculated by comparing group A and B hydrogens as shown in the spectrum.

Figure S2. SEC trace of $\varphi_{\text{SBS}} = 100\%$ (blue) and $\varphi_{\text{SBS}} = 2.5\%$ (red). The large shift in elution time indicates the large increase in molecular weight due to grafting of the SBS. The small hump at later elution times in the $\varphi_{\text{SBS}} = 2.5\%$ SBS trace shows that homopolymer PS is being formed in the reaction. For $\varphi_{\text{SBS}} = 100\%$, the M_n and D were determined to be 62 kg mol⁻¹ and 1.11, respectively. For $\varphi_{\text{SBS}} = 2.5\%$, the M_n and D were determined to be 6,400 kg mol⁻¹ and 1.34, respectively.

Glass Transition Temperature (T_g)

Glass transition temperatures (T_g) were measured using a TA Instrument DSC 250. 10-20 mg of each sample were pressed into aluminum pans, heated to 120 °C at 20 °C/min, cooled to -160 °C at 20 °C/min, and heated again to 120 °C at 20 °C/min. The T_g of both the PBD and PS domains were acquired on the second heating cycle.

Figure S3. DSC traces for the dog bone samples after polymerization and vacuum drying. a) $\varphi_{\text{SBS}} = 100\%$, b) $\varphi_{\text{SBS}} = 50\%$, c) $\varphi_{\text{SBS}} = 40\%$, d) $\varphi_{\text{SBS}} = 30\%$, e) $\varphi_{\text{SBS}} = 20\%$, and f) $\varphi_{\text{SBS}} = 10\%$.

Sample	$T_{\rm g, PBD}$ (°C)	PS wt% in PBD ^a	$T_{\rm g, PS}(^{\circ}{ m C})$	PBD wt% in PS ^a
$\varphi_{SBS} = 100\%$	-91	9	89	3
$\phi_{SBS}=50\%$	-85	14	95	1
$\phi_{SBS} = 40\%$	-92	8	91	2
$\phi_{SBS}=30\%$	-91	9	90	2
$\phi_{SBS}=20\%$	-90	10	82	4
$\phi_{SBS}=10\%$	-91	9	81	5

Table S1. Results from DSC experiments

^aCalculated using the Fox equation.

Figure S4. Tensile measurements for all the $\phi_{SBS} = 100\%$ samples. The applied rate of strain was 5 mm/min.

Figure S5. Tensile measurements for all the $\phi_{SBS} = 50\%$ samples. The applied rate of strain was 5 mm/min.

Figure S6. Tensile measurements for all the $\phi_{SBS} = 40\%$ samples. The applied rate of strain was 5

mm/min.

Figure S7. Tensile measurements for all the $\phi_{SBS} = 30\%$ samples. The applied rate of strain was 5 mm/min.

Figure S8. Tensile measurements for all the $\varphi_{SBS} = 20\%$ samples. The applied rate of strain was 5 mm/min.

Figure S9. Tensile measurements for all the $\phi_{SBS} = 10\%$ samples. The applied rate of strain was 5 mm/min.