Controlling Nanostructure and Mechanical Properties in Triblock Copolymer/Monomer Blends via Reaction-Induced Phase Transitions

Vincent M. Torres,a Jacob A. LaNasa,b Bryan D. Vogt,c and Robert J. Hickeyb,d,*

aDepartment of Chemistry, bDepartment of Materials Science and Engineering, cDepartment of Chemical Engineering, dMaterials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16801, United States

Macromolecular Characterization using NMR and SEC

1H NMR was used to determine critical molecular characteristics such as PS wt% and ratio of 1,2 vs 1,4 PBD content in the SBS triblock copolymer. The PS wt% was calculated to be 35%, which by using bulk densities of 1.04 g cm\(^{-3}\) for PS and 0.91 g cm\(^{-3}\) for PBD, the resulting density of the SBS triblock was calculated to be 0.95 g cm\(^{-3}\). Similarly, the dn/dc value of the polymer was approximated using the PS wt% by using dn/dc values of 0.185 for PS and 0.13 for PBD, resulting in a dn/dc to be approximately 0.1495. It was determined that the SBS triblock was 89% 1,4- PBD. By using the above dn/dc value, the number-average molecular weight (\(M_n\)) of the copolymer was determined to be 62 kg mol\(^{-1}\).
Figure S1. 500 MHz 1H NMR spectrum for $\varphi_{\text{SBS}} = 100\%$. The PS wt% was calculated by comparing the relative mole amounts for PS and PBD. The relative 1,4 vs 1,2- PBD content was calculated by comparing group A and B hydrogens as shown in the spectrum.
Figure S2. SEC trace of $\phi_{\text{SBS}} = 100\%$ (blue) and $\phi_{\text{SBS}} = 2.5\%$ (red). The large shift in elution time indicates the large increase in molecular weight due to grafting of the SBS. The small hump at later elution times in the $\phi_{\text{SBS}} = 2.5\%$ SBS trace shows that homopolymer PS is being formed in the reaction. For $\phi_{\text{SBS}} = 100\%$, the M_n and D were determined to be 62 kg mol$^{-1}$ and 1.11, respectively. For $\phi_{\text{SBS}} = 2.5\%$, the M_n and D were determined to be 6,400 kg mol$^{-1}$ and 1.34, respectively.
Glass Transition Temperature (T_g)

Glass transition temperatures (T_g) were measured using a TA Instrument DSC 250. 10-20 mg of each sample were pressed into aluminum pans, heated to 120 °C at 20 °C/min, cooled to -160 °C at 20 °C/min, and heated again to 120 °C at 20 °C/min. The T_g of both the PBD and PS domains were acquired on the second heating cycle.

![DSC traces for the dog bone samples after polymerization and vacuum drying.](image)

Figure S3. DSC traces for the dog bone samples after polymerization and vacuum drying. a) $\phi_{SBS} = 100\%$, b) $\phi_{SBS} = 50\%$, c) $\phi_{SBS} = 40\%$, d) $\phi_{SBS} = 30\%$, e) $\phi_{SBS} = 20\%$, and f) $\phi_{SBS} = 10\%$.
Table S1. Results from DSC experiments

<table>
<thead>
<tr>
<th>Sample</th>
<th>$T_{g,PBD}$ (°C)</th>
<th>PS wt% in PBD⁹</th>
<th>$T_{g,PS}$ (°C)</th>
<th>PBD wt% in PS⁹</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_{SBS} = 100%$</td>
<td>-91</td>
<td>9</td>
<td>89</td>
<td>3</td>
</tr>
<tr>
<td>$\varphi_{SBS} = 50%$</td>
<td>-85</td>
<td>14</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi_{SBS} = 40%$</td>
<td>-92</td>
<td>8</td>
<td>91</td>
<td>2</td>
</tr>
<tr>
<td>$\varphi_{SBS} = 30%$</td>
<td>-91</td>
<td>9</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>$\varphi_{SBS} = 20%$</td>
<td>-90</td>
<td>10</td>
<td>82</td>
<td>4</td>
</tr>
<tr>
<td>$\varphi_{SBS} = 10%$</td>
<td>-91</td>
<td>9</td>
<td>81</td>
<td>5</td>
</tr>
</tbody>
</table>

⁹Calculated using the Fox equation.
Figure S4. Tensile measurements for all the $\varphi_{\text{SBS}} = 100\%$ samples. The applied rate of strain was 5 mm/min.

Figure S5. Tensile measurements for all the $\varphi_{\text{SBS}} = 50\%$ samples. The applied rate of strain was 5 mm/min.
Figure S6. Tensile measurements for all the $\phi_{\text{SBS}} = 40\%$ samples. The applied rate of strain was 5 mm/min.

Figure S7. Tensile measurements for all the $\phi_{\text{SBS}} = 30\%$ samples. The applied rate of strain was 5 mm/min.
Figure S8. Tensile measurements for all the $\phi_{\text{SBS}} = 20\%$ samples. The applied rate of strain was 5 mm/min.

Figure S9. Tensile measurements for all the $\phi_{\text{SBS}} = 10\%$ samples. The applied rate of strain was 5 mm/min.