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1 Critical and entanglement concentrations

Drastic alteration in the rheological behavior of the polymer solution can be observed depending on the polymer concentration
c. Polymer solutions are classified as dilute, semi-dilute unentangled and semi-dilute entangled based on their critical
concentration c∗. For PEO, PVA and PEG we calculate c∗ from their intrinsic viscosities [η ] using the Flory relation
c∗ = 1/[η ]. For PAM, c∗ is calculated using c∗ = 3Mw/4πR3

gNA, where Rg is radius of gyration determined using < R2
g >

1/2=

0.0749M0.64
w Å1 and NA is Avogadro number. Intrinsic viscosity for the polymers are determined using the Mark-Houwink-

Sakurada correlation [η ] = KMb
w where, K is constant, Mw is molecular weight of the polymer and b is the exponent.

The values of K and b for each polymer used are given in Table-S1. The critical concentration for PEG obtained from

Table S1 Mark-Houwink-Sakurada parameters for polymers

Polymer K b
PAM 1 0.00933 0.75
PEO 2 0.072 0.65
PVA 3 0.00138 0.56
PEG 4 0.0224 0.73

the correlations is validated by plotting the specific viscosity ηsp with c as shown in Fig.S1a. It is observed that ηsp for
concentrations less than 1 and greater than 1 have different slopes and both lines meet at a point with concentration of
5.2% w/v which gives us c∗ and is in good agreement with the calculated value of 5.3% w/v obtained from correlation.
The entanglement concentration for PEO is ce ≈ 6c∗ 5 which gives a value of 0.43% w/v. Concentrations of 0.5% and 0.6%
were chosen for PEO for the experiments which fall in the semi-dilute entanglement regime. The theoretical entanglement
concentration of 0.43% w/v has been experimentally validated by plotting ηsp with c as shown in Fig.S1b showing the
deviation of specific viscosity values after 0.4% w/v concentration.

2 Rheological characterization of polymer solutions

The variation of viscosity for PAM, PEO, PVA and PEG are shown in Fig.S2. Shear thinning behavior is observed for
PAM and PEO whereas, PVA and PEG showed the constant viscosity with shear rate γ̇. Zero shear viscosity of the PAM
solutions are obtained by fitting the rheology data in the form of Carreau-Yasuda model6 represented in equation η−η∞ =

(ηo−η∞) [1+(Γγ̇)a]
n−1

a , where ηo, η∞, γ̇, n, Γ and a represent zero-shear viscosity, infinite-shear viscosity, shear rate, flow
behavior index, time constant and width of the transition region between ηo and the power-law region resepctively. To
characterize the viscoelastic behaviour of the polymer solutions SAOS experiments have been performed. The variation
of storage modulus G′ and loss modulus G′′ with shear strain γ is shown in Fig.S3a for 0.3% w/v PEO and 24% w/v PEG.
Similarly, the variation of G′ and G′′ with angular frequency ω(s−1) for 0.4% w/v and 0.6% w/v PEO.
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Fig. S1 Variation of specific viscosity with concentration for (a) PEG and (b) PEO.

Fig. S2 Rheological behavior of (a) PAM, (b) PEO, (c) PVA and (d) PEG with representation of standard deviations using shades for the
concentrations provided in the legend.

3 Relaxation times

Relaxation time of the dilute polymer solutions is obtained by using Zimm model6.

λz =
1

ζ (3ν)

[η ]Mwηs

NAkBT
(1)

where, λz is the Zimm relaxation time, ηs is the solvent viscosity, kB is the Boltzmann constant, T is the absolute
temperature and ν is fractal polymer dimension determined using the relation b = 3ν − 1, where b is the exponent of
Mark-Houwink-Sakurada correlation. However, the relaxation times of the solutions in semi-dilute unentangled λSUE
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Fig. S3 Behavior of storage and loss modulus with (a) Shear strain for 0.3% w/v PEO and % w/v PEG and (b) angular frequency for 0.4% w/v and
0.6% w/v PEO.

and semi-dilute entangled λSE regimes solutions are calculated using these correlations : λSUE = λz

( c
c∗

) 2−3ν
3ν−1

and λSE =

λz

( c
c∗

) 3−3ν
3ν−1 7–9.

4 Experiment validation using Newtonian fluid

Scaling for DI water in the inertial regime10 is shown in Fig. S4 where the neck radius R is non-dimensionalized as
R∗1 = R/(OhDo) and time as t∗1 = tσ/(ηOhDo) leading to R∗1 ∝ t0.48

1 which is in good agreement with R∗1 ∝ t0.50
1 .

Fig. S4 Scaling of neck radius for DI water in the inertial regime.

5 Theoretical model

To analyse the coalescence phenomenon in polymeric fluids, we appeal to the linear Phan-Thien-Tanner (PTT) model for
viscoelastic rheology. The governing equation of linear PTT model is represented in Eq (2) along with the consitutive
equations to obtain the relation between stress and rate of deformation given in Eq (3), Eq(4) and momentum equation
in radial direction in Eq (5).

λ
∇

τττ + τττ

[
1+

κλ

η
Tr(τττ)

]
= 2ηDDD (2)
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By assuming flow to be quasi-steady and quasi-radial and the various parameters appearing in the momentum balance,

conforming to the linear PTT model, are scaled as τττ →Wiτ̄ττ ; p→Wi p̄ ; R→ R̄√
Wi

; U →
√

WiŪ , where τ is stress, p

is pressure, U is velocity of neck radius and the quantities represented with bars are scaled parameters and Wi is the
Weissenberg number. In terms of these scaled parameters, the rr and rz components of the linear PTT model are expressed
as:

λWi2
[
ῡr

∂ τ̄rr

∂ r̄
−2τ̄rr

∂ ῡr

∂ r̄
−2τ̄rz

∂ ῡr

∂ z̄

]
+ τ̄rrWi

[
1+

κλWi
η

Tr (τ̄)
]
= 2ηWi

∂ ῡr

∂ r̄
(6)

λWi2
[
ῡr
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− τ̄rz

∂ ῡr
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]
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[
1+
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= ηWi
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(7)

By making the following approximations: λWi2� 1 and 1+
κλWi

η
τ̄ττ ∼ κλWi

η
τ̄ττ ( κ is a constant).The stresses are related

to velocity gradients as

τrr ∼
√

2η2

κλ

√
∂υr

∂ r
(8)

τrz = τrr

(
∂υr
∂ z

)
(

2 ∂υr
∂ r

) (9)

Introducing the following scales: vr ∼ U , r ∼ R , z ∼ R (R is length scale associated with the neck geometry), Eq (5)
effectively reduces to:

ρ
U2

R
= c1

∆P
R
− c2

√
2η2

κλ

√
U

R
√

R
(10)

Here, ∆P = σ( 1
H + 1

R −
2

Ro
) ; P1−P∞ = 2σ

Ro
, P2−P∞ = σ( 1

H + 1
R ) (P1, P2 being the inside and outside pressures respectively, P∞

being the atmospheric pressure and σ is the surface tension). Accordingly, (10) gets reduced to:

ρ
U2

R
= c1

σ

HR
− c2

√
2η2

κλ

√
U

R
√

R
(11)

Considering the geometric constraint
H
R
≈ R

2Ro
(H is length scale associated with neck geometry and Ro is radius of the

drop) as obtained from Fig.4 and introducing the dimensionless parameters R∗ =
R√
νoλ

and t∗ =
t

λOh
(where, νo is the

kinematic viscosity, λ is the relaxation time of the solution and Oh= η/
√

Roρσ is the Ohnesorge number), (11) is reduced
to: (dR∗

dt∗

)2
+

A1√
R∗

(dR∗

dt∗

) 1
2 − A2

R∗2
= 0 (12)
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where, A1 =

√
2√
κ

c2Oh
3
2 and A2 =

2σRo

ρνo2 c1Oh2. (12) is solved using a 4th order Runge-Kutta method. This is suited for

non-stiff differential equations of the first order. Since the first order derivative forms a non-linear algebraic equation in
itself, it is solved using a numeric solver.
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