Supplementary information for

Role of soft-gel substrates on bouncing-merging transition in drop impact on liquid film

Soyoung Shin^{a,b}, Minghao Li^d, Xian Wu^c, Abhishek Saha^{c,*}, Jinhye Bae^{a,b,d,e,*}

- a. Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- b. Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
- с. Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- d. Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
- е. Sustainable Power and Energy Center (SPEC), University of California San Diego, La Jolla, CA 92093, USA.

*Corresponding authors: asaha@eng.ucsd.edu (A Saha), j3bae@ucsd.edu (J Bae)

$C_{BIS} (\text{wt\%})^1$	C _{Monomer} (wt%) ²	<i>TEMED(%)</i> ³	$C_{APS}(\%)^4$	Vol% of APS in sample ⁵
1.5				
3.0				
6.0	4.69	0.2117	11.22	0.5
10.5				
15.0				

Table S1. PAAm composition information with five different wt% of crosslinker.

¹ N,N-methylene-bis-acrylamide (BIS) wt%, noted as $C_{BIS}(wt\%)$, is defined as $\left(\frac{w_{BIS}(g)}{w_{monomer}(ml)} \ge 100\right)$

² Acrylamide monomer wt% is defined as $C_{monomer}(wt\%) = \left(\frac{w_{monomer}(g)}{w_{H_2O}(ml)} \ge 100\right)$, where deionized water was used.

³ TEMED(%) is $\left(\frac{Vol_{TEMED}}{Vol_{batch}} \times 100\right)$, where the volume of the batch is the volume of premixed solution of monomer, BIS, and deionized water.

⁴ APS solution was prepared right before it was used and its concentration was defined as $C_{APS}(\%) =$

 $\left(\frac{w_{APS}(g)}{w_{H_2O}(ml)} \ge 100\right)$, where deionized water was used.

⁵ The true APS(%) used for each sample was constant as 0.5% as similar to vol% of TEMED, defined as $\left(\frac{Vol_{APS}}{Vol_{batch}} \ge 100\right).$

Swelling ratio of PAAm

Swelling ratio is defined as $\lambda = \frac{D_{\infty}}{D_0}$, where D_{∞} is the diameter of PAAm in the swollen state and D_0 is the diameter of PAAm in the as-prepared state. λ is related to the crosslinking density of PAAm, thus it decreased as a function of C_{BIS} until $C_{BIS} = 6.0$ wt%, while $C_{BIS} > 6.0$ wt%, λ became independent of C_{BIS} . This can be explained by the spatial inhomogeneity^{1,2} of PAAm that 2nd order crosslinking reactions (*i.e.*, multiple crosslinking reactions^{3,4}) become dominant, resulting in nonuniform crosslinking density⁵ instead of forming new polymer networks (*i.e.*, crosslinking reactions) that affect λ (Fig. S1).

Fig. S1 Swelling ratio (λ) of PAAm with different wt% of C_{BIS} .

Overall droplet regime diagram of PAAm with different C_{BIS} as the soft substrate

We observed no significant difference in We_{cr} (~17) at the transition of bouncing and merging with PAAm substrates prepared by different C_{BIS} since the droplet does not contact with the hydrogel substrate (*i.e.*, hydrogel substrate does not affect the droplet effect) for the merging in the inertial limit. On the other hand, we obtained the critical changes in H^*_{DT} , H^* for the deformation transition (*i.e.*, transition from bouncing to late merging), with PAAm substrates with different C_{BIS} . From Fig. S2, PAAm with 1.5 to 6.0 wt% C_{BIS} showed increases in H^*_{DT} , leading the late merging phenomena to occur with higher H^* . As described in the manuscript (Fig. 7b), when Y increases, deformation of droplet increases thus film thickness(H^*) also increases to reach $\Delta SE_F \ge \Delta SE_D$ (Fig. S2).

Fig. S2 Overall regime diagrams of PAAm with five different C_{BIS} (1.5, 3.0, 6.0, 10.5, and 15 wt%) as the soft substrate.

References

- 1 I. Yazici and O. Okay, *Polymer (Guildf).*, 2005, **46**, 2595–2602.
- 2 F. Ikkai and M. Shibayama, J. Polym. Sci. Part B Polym. Phys., 2005, 43, 617–628.
- 3 H. Cerid and O. Okay, *Eur. Polym. J.*, 2004, **40**, 579–587.
- 4 O. Okay, N. K. Balimtaş and H. J. Naghash, *Polym. Bull.*, 1997, **39**, 233–239.
- 5 N. Orakdogen, M. Y. Kizilay and O. Okay, *Polymer (Guildf)*, 2005, **46**, 11407–11415.