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1 Parameters used in the experiments

Table S1 reports the composition of the water-glycerol mix-
tures used in the experiments, and the values of the viscosity
ratios ηin/ηout, the viscosities of the inner fluids ηin and the
viscosities of the outer fluids ηout.

Table S2 reports the flow rate q, the channel depth h, the
plate spacing b and the viscosity ratio ηin/ηout for each exper-
iment.

2 Negligible effects of diffusion in the numeri-
cal simulations

The numerical simulations are governed by the second-order
advection-diffusion transport equation, and in accordance
with the experiments the simulations are performed in the high
Péclet number regime where advection dominates over diffu-
sive effects. We confirm this by varying the diffusion coef-
ficient by several orders of magnitude and showing that the
pattern morphology is independent of the diffusion coefficient
(or equivalently of a dimensionless Péclet number) over eight
orders of magnitude, as shown in Fig. S1. At low enough
Péclet number, diffusive effects dominate the pattern growth
and stabilize the instability. All the simulations reported in
the manuscript are performed far from this low Péclet number
regime.

To provide a dimensionless point of reference, we define the
Péclet number as Pe=UL/D, where U is the characteristic ve-
locity, L is a characteristic length scale and D is the diffusion
coefficient1. For a radial flow, Pe = Q/D has been used2,3

with Q [m2/s] the gap-averaged flow rate, i.e. the volumetric
flow rate per unit depth. As discussed in4, this implies that
the characteristic velocity for radial source flows is U = Q/L,
where L is the distance from the center of the cell. For a con-
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stant injection rate and a stable displacement, U ∝ 1/L and UL
is equal to Q at any point. However, this equality and hence
the applicability of the expression Pe = Q/D holds only for a
stable radial flow propagation. When instabilities are present,
the velocity does not vary as 1/L and UL at a finger tip can be
larger than Q. Pe = Q/D therefore provides a lower bound for
radial flows subject to viscous fingering instabilities. Keeping
this in mind, we now use this definition of Pe.

The injection velocity is set to 0.14 m/s and imposed on
an inner circle (inlet hole) of radius 1.4 mm. This gives a
depth-averaged Q ∼ 0.0002 m2/s, comparable to the depth-
averaged Q used in the experiments ranging from 0.00012 to
0.0033 m2/s. We have confirmed that UL at any point be-
yond the injection source and sufficiently behind the unsta-
ble interface maintains this value, but it increases at a finger
tip. Given a certain diffusion coefficient and Q, we can es-
timate a lower bound for the Péclet number. For instance,
a Péclet number ∼ O(1) required to suppress the instabil-
ity2 in an isotropic system would imply a diffusion coef-
ficient ∼ 10−4 m2/s, in good agreement with our value of
∼ 10−5 m2/s for an anisotropic system reported in Fig. S1.
Exploring the stabilizing effect of diffusion on the transition
between dendritic and dense-branching growth in anisotropic
media is an exciting line of future research.

3 Convergence of the numerical simulations

We have paid careful attention to the robustness and validity
of the numerical modeling and have confirmed the numeri-
cal convergence, as demonstrated in Fig. S2. An optimal
numerical mesh is chosen such that the fine features of the
domain are well discretized, the simulations are computation-
ally feasible, and a good degree of convergence is achieved in
the flow dynamics and the pattern morphology. The optimal
mesh that meets these criteria consists of 222,162 triangular
elements that discretize an annular mesh area encompassing
arrays of triangular objects. The average mesh element qual-
ity is above 0.9 with respect to various mesh quality measures
including skewness, maximum angle, and growth rate of ele-
ments. The mesh element quality is a dimensionless quantity
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between 0 and 1, where 1 represents a perfectly regular ele-
ment and 0 represents a degenerated element. A larger than
0.9 mesh quality represents a geometrically well-behaved and
high-quality mesh that facilitates numerical convergence.

4 Movies showing the growth of dendritic pat-
terns

The movies show the growth of dendritic patterns resulting
from the displacement of a more-viscous fluid by a less-
viscous one in the anisotropic environment of six-fold sym-
metric lattice channels. The width of the lattice channels is
w = 800 µm, the distance between the edges of two channels
is d = 850 µm. The flow rate is q = 1 ml/min, the channel
height is h = 250 µm, and the plate spacing between the en-
graved acrylic plate and the top glass plate is b = 508 µm.

Movie 1: The viscosity ratio between the inner and the outer
fluid is ηin/ηout = 0.0013. The pattern exhibits six-fold sym-
metry.

Movie 2: The viscosity ratio between the inner and the outer
fluid is ηin/ηout = 0.05. Both main and sub dendrites grow at
comparable rates.

5 Symmetry of dendritic patterns depends on
the degree of anisotropy h/b

For a fixed viscosity ratio ηin/ηout, a decrease in the degree
of anisotropy h/b leads to a systematic transition from six- to-
wards twelve-fold symmetric dendrites, as shown in Fig. S3
for ηin/ηout = 0.0125 and a flow rate of 1 ml/min.

6 Simplified model to account for the effect of
the degree of anisotropy and the viscosity ra-
tio on the pattern growth

Our experiments and simulations reveal that the degree of
anisotropy h/b and the viscosity ratio ηin/ηout govern the
growth of the sub and main dendrites in an anisotropic envi-
ronment. We simplify our topology by considering flow in two
directions with respect to the direction of parallel engraved
channels, to capture the role of h/b and ηin/ηout in govern-
ing the pattern growth: (a) the pressure gradient ∇p is paral-
lel to the channels, corresponding to the growth of the main
dendrites and (b) the pressure gradient ∇p is perpendicular
to the channels, representing the growth of the sub dendrites,
as shown in Figs. S4a and S4b. We note that such a texture,
as well as that of our more complex six-fold symmetric lat-
tice, is isotropic for a single-phase flow. For a two-phase flow,
however, the presence of the interface leading to a gradient of
viscosity in the flow direction can locally break the symmetry

and lead to an anisotropic two-phase permeability of the inter-
face region. To account for this, we use concepts derived for
the hydrodynamics of slippage on textured surfaces for two-
phase flows over hydrophobic surfaces5,6. In analogy to these
concepts, and to account for the local asymmetry, we consider
that the more-viscous outer fluid can get partially trapped in
the channels as the less-viscous fluid flows above the texture
following the path of least resistance, as schematically shown
in Fig. S4c. This conceptualization allows us to introduce a
local effective slip length to model the interface region5,7–10.

We denote the height of the layer of trapped outer fluid as
δ = αh, where α denotes a direction-dependent coefficient.
The local effective slip length felt by the inner fluid over a
valley of height h, measured from the no-slip boundary at the
surface of the channel-free region (dashed line in Fig. S4c),
scales as

bslip = h−δ

(
1− ηin

ηout

)
= h−αh

(
1− ηin

ηout

)
(S1)

The enhancement of permeability due to bslip scales as

bslip

b
=

h
b
− h

b
α

(
1− ηin

ηout

)
(S2)

For single-phase flow, where ηin/ηout = 1, bslip = h and the
permeability above the channel is proportional to h+ b. For
two-phase flow, however, bslip decreases with decreasing vis-
cosity ratio leading to a smaller enhancement of the perme-
ability. The decrease of bslip depends on the direction of the
channels with respect to the flow, leading to a local symmetry
breaking and the rich anisotropic pattern selection.

When Tr(bslip)/b� 1, the effect of the channels dominates
and an analysis in terms of an effective slip tensor is not ap-
plicable. The case of interest here is when Tr(bslip)/b� 1,
where the texture can be analyzed locally in terms of an effec-
tive slip tensor. This effective slip tensor is positive definite
and 90◦ symmetric between the fast and slow directions9,11,

bslip = Sθ

(
bslip,‖ 0

0 bslip,⊥

)
S−θ (S3)

where Sθ =

(
cosθ sinθ

−sinθ cosθ

)
and θ is the angle between

the pressure gradient and the texture. bslip,‖, bslip,⊥ are two
eigenvalues of bslip. The subscripts ‖,⊥ denote the fast direc-
tion and the slow direction, respectively. Note that here, the
fast direction of the effective slip tensor corresponds to the di-
rection of the main dendrites, the slow direction corresponds
to the direction of the sub dendrites. The two corresponding
eigenvectors have a 90◦ symmetry11, corresponding to the for-
mation of, respectively, the main dendrites at 0◦, 60◦, 120◦ and
the sub dendrites at 30◦, 90◦, 150◦.
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From Eq. (S1), we have

bslip,‖ = h
(

1−α‖+α‖
ηin

ηout

)
(S4)

and

bslip,⊥ = h
(

1−α⊥+α⊥
ηin

ηout

)
(S5)

where α‖,⊥ denotes the coefficient for the fast and slow di-
rection, respectively, related to the effective slip tensor. As
bslip,‖ > bslip,⊥, we have α⊥ > α‖.

The dimensionless effective permeability tensor, scaled to
its value without slip, is expressed as

K = I+3Ap (S6)

where Ap is a dimensionless matrix describing a slip-driven
plug flow in the Ap∇p direction11. We have

Ap = Sθ

(
As
(
b‖
)

0
0 As (b⊥)

)
S−θ (S7)

where As
(
b⊥,‖

)
=

b⊥,‖
b+b⊥,‖

. For θ = 0◦, this gives

K =

(
Kxx Kxy
Kyx Kyy

)
=

 1+ 3
b

bslip,‖
+1

0

0 1+ 3
b

bslip,⊥
+1


(S8)

Substituting Eq. (S4) and Eq. (S5) into Eq. (S8) yields

K =

 1+ 3
b

h(1−α‖+α‖
ηin
ηout )

+1
0

0 1+ 3
b

h(1−α⊥+α⊥
ηin

ηout )
+1


(S9)

For our case where bslip/b� 1, the effective permeability ten-
sor can be expressed as

κ ≈ b2

12ηin

 1+
3h
(

1−α‖+α‖
ηin

ηout

)
b 0

0 1+
3h
(

1−α⊥+α⊥
ηin
ηout

)
b


(S10)

For the simplified topology in Fig. S4, the main dendrites form
along the fast direction of the effective permeability and the
sub dendrites form along the slow direction of the effective
permeability:

κm =
b2

12ηin
Kxx ≈

b2

12ηin

(
1+

3h
b

(
1−α‖+α‖

ηin

ηout

))
(S11)

κs =
b2

12ηin
Kyy ≈

b2

12ηin

(
1+

3h
b

(
1−α⊥+α⊥

ηin

ηout

))
(S12)

This shows that as ηin/ηout increases, the effective permeabil-
ities in the main and sub channels, κm and κs, increase. Ac-
cordingly, the interface velocities in the main and sub chan-
nels, um = −κm∇p and us = −κs∇p, increase. Let us now
discuss the role of the viscosity ratio ηin/ηout for the increase
in permeability for both the main dendrites and the sub den-
drites.

The ratio of the derivatives of the permeability for sub den-
drites and main dendrites is

∂κs/∂ (ηin/ηout)

∂κm/∂ (ηin/ηout)
∼ α⊥

α‖
> 1 (S13)

Therefore, for increasing viscosity ratio, the increase in per-
meability along the sub dendrites (slow direction) is larger
than the increase in permeability along the main dendrites (fast
direction).

The ratio of the interface velocities between the sub den-
drites and the main dendrites scales as

us

um
' κs

κm
' 1−

3
(

1− ηin
ηout

)(
α⊥−α‖

)
b
h +3

(
1−α‖

(
1− ηin

ηout

)) (S14)

where α⊥−α‖ ≥ 0.
This analysis shows that for the case of bslip/b� 1, us/um

increases with an increase in the viscosity ratio ηin/ηout or a
decrease in the degree of anisotropy h/b. When the viscosity
ratio ηin/ηout approaches 1, us/um will be close to 1. When h/b
approaches zero, us/um approaches 1. Clearly, this description
is oversimplified but it does capture the essential features of
how the viscosity ratio ηin/ηout and the degree of anisotropy
h/b affect the interface velocities of the main and sub den-
drites, and therefore the growth of Rm and Rs.

7 Growth of sub dendrites

At early stage, two fingers grow between pairs of neighbor-
ing main dendrites on each side of the 30◦ direction to the
straight channels, as shown in Fig. S5a. This is observed at
any viscosity ratio. At low viscosity ratio and large h/b, these
fingers soon merge with the main dendrites, which results in
a six-fold symmetric pattern. With increasing ηin/ηout and de-
creasing h/b, each of the two fingers will further split into two
as they reach the next lattice junction. One branch advances
parallel to the main dendrite and eventually merges with it.
The other branch diverts towards the 30◦ direction and will
merge with its counterpart on the other side of the 30◦ direc-
tion into a sub dendrite, as shown in Fig. S5b. Depending on
which finger grew slightly faster, the sub dendrite will grow
in a zig-zag path along the 30◦ direction either right below or
above this direction, as illustrated by the arrows in Fig. S5c
and Fig. S5a. The absence of interfacial tension implies that
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the flow is unaffected by pinning effects on corners that be-
come important in immiscible fluids12,13. As a result, when
the tip of a sub dendrite reaches an entrance of a junction, as
shown in the schematics of the zoomed-in region in Fig. S6b,
its path is governed by the combination of the global pressure
distribution from the main dendrites and the local pressure dis-
tribution from the tip of the sub dendrites.

When the tip of a sub dendrite reaches a junction that is not
on the 30◦ line, indicated by a green dot in Fig. S6a, the pres-
sure profile in the outer fluid imposed by the main dendrites
pushes the tip predominantly towards the 30◦ line through
channel 1. When the tip of a sub dendrite reaches a junction
on the 30◦ line through channel 4, indicated by a cyan dot in
Fig. S6a, it grows towards channel 2 as the local pressure field
at the tip is biased towards its initial side of the 30◦ line, where
it first started to grow. Note that in Fig. S6a, we differentiate
between these two sides by the pink and yellow arrows; the
sub dendrite follows either the yellow or the pink zig-zag path
depending on the side it first appeared.

We note that a small amount of fluid also goes towards the
direction that is not selected by the sub dendrite tip (channel 1
from the cyan dot for an incoming liquid through the horizon-
tal channel 4, for example). This flow leads to the side-branch
decoration along the sub dendrites.

References
1 G. M. Homsy, Annu. Rev. Fluid Mech, 1987, 19, 271–311.
2 C. T. Tan and G. M. Homsy, Phys. Fluids, 1987, 30, 1239–1245.
3 V. Sharma, S. Nand, S. Pramanik, C.-Y. Chen and M. Mishra, J. Fluid

Mech., 2020, 884, A16.
4 A. Riaz and E. Meiburg, Phys. Fluids, 2003, 15, 938–946.
5 O. I. Vinogradova, Int. J. Miner. Process., 1999, 56, 31–60.
6 F. Feuillebois, M. Z. Bazant and O. I. Vinogradova, Phys. Rev. Lett., 2009,

102, 026001.
7 A. D. Stroock, S. K. Dertinger, G. M. Whitesides and A. Ajdari, Anal.

Chem., 2002, 74, 5306–5312.
8 H. A. Stone, A. D. Stroock and A. Ajdari, Annu. Rev. Fluid Mech., 2004,

36, 381–411.
9 S. Schmieschek, A. V. Belyaev, J. Harting and O. I. Vinogradova, Phys.

Rev. E, 2012, 85, 016324.
10 K. Kamrin, M. Z. Bazant and H. A. Stone, J. Fluid Mech., 2010, 658,

409–437.
11 M. Z. Bazant and O. I. Vinogradova, J. Fluid Mech., 2008, 613, 125–134.
12 A. G. Banpurkar, A. S. Ogale, A. V. Limaye and S. B. Ogale, Phys. Rev.

E, 1999, 59, 2188–2191.
13 A. G. Banpurkar, A. V. Limaye and S. B. Ogale, Phys. Rev. E, 2000, 61,

5507–5511.

1–8 | 4



Table S1 Composition and viscosities of the water-glycerol mixtures
cglycerol (wt%) ηin/ηout ηin (Pa s) ηout (Pa s)

0 0.0011 0.0013 1.176
12.3 0.0013 0.0015 1.176
39.1 0.0025 0.0029 1.176
52.9 0.005 0.0059 1.176
59.6 0.0075 0.0088 1.176
63.4 0.0125 0.0147 1.176
72.4 0.0234 0.0275 1.176
76.6 0.03 0.0351 1.176
79 0.04 0.0468 1.176

81.3 0.05 0.0592 1.176
84.4 0.068 0.08 1.176
86.8 0.1 0.118 1.176
89.9 0.157 0.185 1.176

Table S2 Parameters used in the experiments
q = 1 ml/min q = 10 ml/min

h (µm) ηin/ηout b (mm) b (µm) b (µm) b (µm) b (µm) b (µm) b (µm) b (µm)
10 0.0013 254

28

0.0013 762 508 254 203 127 762
0.0025 762

0.03 762 508 254 127
0.005 508
0.068 762 508

50

0.0011 508 254
0.0013 1000 762 508 127 100 55 762 508
0.0025 1000 508 254
0.005 1000 508 254
0.0075 508 254
0.0125 1000 508 254 762
0.0234 1000 762 508 203
0.03 254
0.05 1000 762 508 254 203

0.068 1350 375 254 508

250

0.0013 1000 762 508 254 127 508
0.0025 508 254
0.005 762 508 254
0.0075 762
0.0125 762 508 254 508
0.0234 762 508 203 508

0.03 508 254
0.04 508 762 508
0.05 508 508 254 508

0.068 508 508
0.1 508 762

0.157 508

1–8 | 5



10-7 m2/s 10-4 m2/s10-6 m2/s

10-8 m2/s10-10 m2/s10-14 m2/s 10-12 m2/sD = 10-16 m2/s

5×10-6 m2/s 10-5 m2/s

Fig. S1 Simulated patterns (ηin/ηout = 0.05 and h/b = 0.49) obtained for different diffusion coefficients D. The dashed box denotes the
conditions used in the manuscript.

Fig. S2 Simulated patterns (ηin/ηout = 0.05, h/b = 0.49) for different mesh resolutions. The mesh used for the results reported in the
manuscript is denoted by the dashed box.
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Fig. S3 Dendritic patterns formed at ηin/ηout = 0.0125 for (a) h/b = 1 and (b) h/b = 0.2. The scale bar is 1 cm.

Fig. S4 Schematic of the simplified channel texture. (a) The main dendrites grow along channels parallel to the flow direction. (b) The sub
dendrites grow along channels perpendicular to the flow direction. (c) The effective slip length bslip at the interface between the two fluids
modifies the local permeability as the inner fluid flows above the channels. The light blue region represents the less-viscous inner fluid, the
white region represents the more-viscous outer fluid within the channel.
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Fig. S5 Formation and growth of sub dendrites. (a) At early stage, two fingers emerge between the neighboring main dendrites (white
contour). They further split as they reach the center of a next lattice (blue contour). (b) One of the fingers outgrows the other one and becomes
a sub dendrite (in this example, the one below the red 30◦ line). The colored contours represent the interface position at different times. (c)
The sub dendrite further grows along the zig-zag path illustrated by the solid yellow arrows. A smaller amount of flow also goes towards the
dashed yellow arrows, leading to the formation of side branches.

Fig. S6 Path selection towards 30◦ direction governed by pressure profile. (a) As the tip of a sub dendrite reaches a junction that is not on the
30◦ line, indicated by a green dot, the pressure profile in the outer fluid imposed by the two neighboring main dendrites pushes the tip towards
the 30◦ line through channel 1, as shown in the left inset of (b). As the tip reaches a junction on the 30◦ line, indicated by a cyan dot, through
channel 4, it grows towards channel 2 because the local pressure gradient is highest in that direction, as shown in the middle inset of (b). The
sub dendrite continues to grow on the same side of the 30◦ line where it first developed. The pink arrows denote the path of a sub dendrite
formed above the 30◦ line, the yellow arrows denote the path of a sub dendrite formed below the 30◦ line. The solid arrows indicate the main
direction of the flow, but a small amount of flow goes towards the dashed arrows and leads to the side-branch decoration of the dendrites.

1–8 | 8


	Parameters used in the experiments
	Negligible effects of diffusion in the numerical simulations
	Convergence of the numerical simulations
	Movies showing the growth of dendritic patterns
	Symmetry of dendritic patterns depends on the degree of anisotropy h/b
	Simplified model to account for the effect of the degree of anisotropy and the viscosity ratio on the pattern growth
	Growth of sub dendrites

