Supplementary material

In situ and Non-cytotoxic Cross-linking Strategy for 3D Printable Biomaterials

Yiğitcan Sümbelli^a, Sibel Emir Diltemiz^{a,b,*}, Mehmet Girayhan Say^{b,γ}, Özlem Biçen Ünlüer^a, Arzu Ersöz^{a,b}, Rıdvan Say^{a,b}

^aChemistry Department, Faculty of Science, Eskişehir Technical University, 26470 Eskisehir, Turkey

^bBionkit Co.Ltd. Anadolu University Teknopark, 26470 Eskisehir, Turkey

^vCurrent address: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden

*Correspondence Address Eskişehir Teknik Üniversitesi, Fen Fakültesi, Kimya Bölümü, Yunus Emre Kampüsü, 26470 Eskişehir, Turkey Tel : (90) 222 3350580/4790 Fax: (90) 222 3204910 e-mail : semir@eskisehir.edu.tr

Hydrogel Content and Printing Data

Code name of the	Gelatin	Alginate	Whey Protein	MaTrp-Ru(bipyr) ₂ -	GelMA	Irgacure
Combination	(w/v)	(w/v)	Isolate (w/v)	MaTrp	(w/v)	(w/v)
GA-Whey-MATRu	11	9	2	625ppm 50μL	-	-
GA-Whey(ionic cross-linking)	11	9	2	-	-	-
GA-Whey	11	9	2	-	-	-
GelMA-Alg-Whey	-	4	2	-	7	7
GA-MATRu	11	9	-	625ppm 50µL	-	-

Table S1. Code names and the % content of the hydrogel combinations

Table S2. Printing parameters for a scaffold by using GA-Whey-MATRu combination

Needle Diameter (mm)	0.25	
Printing Temperature (°C)	25 - 30	
Printing (XY) Speed (mms ⁻¹)	10 – 12	
Pressure (bar)	1.0 - 2.0	
Postflow & Preflow delay (s)	(-0.1) – (+0.1)	
Dimensions (X x Y x Z) (mm)	15 x 15 x 2.5	
Width Between Lines (mm)	1.0	
Printing Time (s)	27.5	
Bioink Volume (µL)	0.016	

CD Spectroscopy of Whey Protein Isolate

Circular dichroism (CD) spectroscopy gives information about the secondary structures, α helix or β sheet etc., of protein [1,2]. Beside this, deformations or modifications in proteins or protein based biomaterials could be defined from changes in secondary structure via CD spectroscopy. The secondary structure of whey protein isolate was analyzed by CD spectroscopy. CD spectrum was obtained 180-380 nm wavelength interval using 1 mm of light path quartz cuvette by Chirascan CD Spectrophotometer. For analysis, 1000 ppm whey protein was prepared in deionized water.

In Figure S1, negative band at 208-222 interval and positive band at 193 nm indicated α -helix folding in whey protein isolate. β -sheet folding of isolated whey protein was seen at 220-240 nm interval. So, secondary structure of whey protein was exposed using CD spectrum.

Figure S1. CD spectra for whey protein isolate

3D Printing of Different Structures

Figure S2. GA-Whey-MATRu combination 3D printing (a) scaffold with 1.5 mm line width, (b) scaffold with 0.5 mm line width, (c) dog bone shaped mechanical tester (d) 10-layer scaffold, (e) scaffold which has 15 mm width, (f) dog bone shaped mechanical tester which has 55 mm length, (g, h, i) different structures with CAD

Mechanical Test Demonstration of Printed Structures

Figure S3. Dog bone shaped mechanical testers' elongation (a1) GA-Whey intact, (a2) GA-Whey ruptured, (b1) GA-Whey-MATRu intact, (b2) GA-Whey-MATRu ruptured, (c1) GA-Whey_(ionic cross-linking) intact, (c2) GA-Whey_(ionic cross-linking) ruptured, and (d1) GA-Whey-MATRu scaffold intact, (d2) GA-Whey-MATRu scaffold ruptured

Protein Release

Figure S4. Calibration graph of GA-Whey-MATRu scaffold's protein release

Table S3. Protein release data	of GA-Whey-MATRu and GA-Whey	ionic crosslinking) scaffolds
--------------------------------	------------------------------	-------------------------------

DAYS	GA-Whey-MATRu (ppm)	GA-Whey(ionic crosslinking) (ppm)
0	0.4267 ± 0.8554	0.76 ± 0.0566
1	9.8333 ± 2.0052	4.0417 ± 1.4731
2	10.4348 ± 0.0869	3.9783 ± 1.5065
3	11.5757 ± 1.2376	2.9995 ± 1.6714
4	12.5714 ± 0.9086	3.8571 ± 1.4142
7	12.9333 ± 1.9553	6.65 ± 2.4749

GelMA Synthesis and Characterization

Figure S5. H-NMR spectra of GelMA

Figure S6. SEM micrograph of GelMA

References

- L. Whitmore, B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers. 89 (2008) 392–400. doi:10.1002/bip.20853.
- [2] A.J. Miles, B.A. Wallace, Circular dichroism spectroscopy of membrane proteins, Chem. Soc. Rev. 45 (2016) 4859–4872. doi:10.1039/C5CS00084J.