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In this ESI we complement the information given in the main pa-
per regarding our measurement of the super-saturation pressure
ps (§ 1), our measurement of the Young elastic modulus E (§ 2),
our image acquisition and analysis (§ 3), and our estimation of
the importance of axial vs radial diffusion of dissolved gas (§ 4).

1 Pressure ps measurements

1.1 Protocol and pressure reading error
The experimental temperature is maintained at 23± 2◦C by a
room air-conditioning system turned on several hours before de-
compression. The actual water temperature T was always mea-
sured in each experiment with an alcohol thermometer (to 0.5◦C
accuracy) prior to the imaging, and was used for the quantitative
results.

After > 48 hours of swelling of the hydrogels, and hours of
thermal equilibrium, the seal cap∗ on the bottle was opened and
swapped for a pressure measurement cap. This ‘cap swap’ was
necessary due to (i) the limited number of pressure gauges avail-
able and our need to run experiments in batches using several
bottles; (ii) the imperfect seal provided by pressure gauges which
would have caused unacceptable pressure loss during the long
swelling time of the beads. The bottle was then vigorously shaken
to re-establish equilibrium between the pressurised gas (CO2)
pocket and the liquid phase below it. Two tubes were connected
to this pressure measurement cap.

The first tube was connected to a small pressure gauge, which
had a wide range but was relatively inaccurate. It was used to
give a rough estimate of the gas pressure in the bottle, so that
a more suitable gauge (in terms of range and resolution) could
then be chosen for a more accurate measurement.

The second tube was connected to a closed valve. The most
appropriate pressure gauge chosen above was then attached to
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∗The seal cap was a ‘tamper evident’ screw cap designed for new soda bottles, i.e.

with an additional security ring offering excellent seal.

this valve, and the valve was opened to connect the gauge to the
bottle and get a pressure reading.

Two pressure gauges were used in the experiment: one with
2.5 bar range, and one with 4 bar range (both relative to atmo-
spheric pressure pa), with respective resolution of ±0.05 bar and
±0.1 bar, i.e. around ±2% of their maximal value. To be con-
servative, we consider that any single pressure reading ps− pa is
prone to a fixed ±5% error.

Next, we discuss how we used this reading to estimate the ac-
tual gas pressure before the cap swap (§ 1.2)and therefore the
associated dissolved gas concentration in the hydrogel, which is
of greatest importance in our model (§ 1.3).†

1.2 Cap swap leak correction
Introduction. Here we comment on the issue, sketched in fig-
ure 1, that a small amount of CO2 would leak out of the system
during the cap swap (figure 1b). This caused our measured value
of the CO2 pressure p1

s after the cap swap (figure 1c) to underes-
timate the ‘real’ one during the swelling of the bead, that we call
p0

s & ps (figure 1a).
Note, however, that the loss due to cap swap does not af-

fect the CO2 concentration within the hydrogel beads, which re-
mains equal to c0

s = kh p0
s , as there is insufficient time for CO2

to diffuse out of the bead (diffusion with a constant of order
D ∼ 10−9 m2 s−1 only penetrates into the bead by a negligible
thickness ∼

√
Dt ≈ 10−4 m over a duration 10 s). Our objective

is therefore to estimate p0
s .

Dominant mechanism. There are two mechanisms contribut-
ing to the loss of CO2 during the cap transfer.

First, the CO2 gas initially present in the pressurised gap‡

(panel a) is released when the seal is broken (panel b). When ps

is measured, CO2 gas comes out of the solution to re-pressurize

† In the following discussion we always mention the specific gas (CO2) used in all
our experiments. This is done merely for convenience, but our calculations and
discussion can be applied without loss of generality to any pure gas (e.g. replacing
‘CO2 ’ by ‘N2 ’ everywhere except when actual specific constants like D,kh are needed).
‡Note that any air (N2, O2) introduced in the gap will be purged by CO2 bubbling out

of solution, such that we assume that the pressurised gap is always pure CO2.
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Fig. 1 Illustration of the cap swap leak and and its associated source of
error. System (a) during the swelling of the hydrogel beads; (b) during
the cap swap; (c) during the first pressure measurement.

the gap and establish a new equilibrium (panel c).
Second, when the pressure is released, CO2 can bubble out

directly out of solution. However, we estimate that this second
mechanism is relatively insignificant as the bubbling is reason-
ably slow in experiments (probably due to very few available nu-
cleation sites).

We therefore propose a correction for the amount of CO2 lost
during swapping the caps based on the first mechanism, which
we assume to be dominant.

Conservation of CO2. The volume of the gas gap inside the bot-
tle is denoted Vg, and the liquid solution beneath it Vl (excluding
the beads). The total amount of molecular CO2 in the system
(excluding the beads) after removal of the seal cap (panel b) is

npanel b =
paVg

RT
+ c0

sVl , (1)

i.e. the sum of the gaseous and dissolved mole content.
After re-pressurization (panel c), we have npanel c = nsol + ngas

where

nsol = c1
sVl and ngas =

p1
sVg

RT
=

c1
sVg

khRT
, (2)

where we recall that kh is the Henry solubility constant.
By conservation of CO2 from panel b to c we therefore have

paVg

RT
+ c0

sVl = c1
sVl +

c1
sVg

khRT
. (3)

Correction factor. This can be re-arranged to find the required
correction between p0

s and p1
s

c0
s = kh p0

s where p0
s = pa +(p1

s − pa)
(

1+
1

khRT
Vg

Vl

)
︸ ︷︷ ︸

correction factor

. (4)

The correction factor is ≈ 1.18(Vg/Vl) at 25◦C, and vanishes as
Vg/Vl → 0 (the ideal case, which could not be achieved exper-
imentally, as it was difficult to reduce Vg below 50cm3 due to
vigorous bubbling following the initial carbonation).

Validation and practical issues. We validated the principle be-
hind this theoretical correction (4) by a set of ad hoc experiments
in which we systematically varied Vg/Vl by varying the water level
(measured by weighing the bottle) and measured the actual ra-

Fig. 2 Experimental validation of the pressure correction (4). Note that
the slope of the fit (≈ 1.38) is slightly larger than expected (≈ 1.18). The
intercept of the fit was adjusted to 0 by adding to Vg an ad hoc volume
of gas corresponding to that in the pressure gauge and tubing, as well
as the deformation of the plastic bottle under pressure. These practical
issues led us to abandon this correction method directly based on (4)
and adopt instead the final correction method shown in figure 3.

Fig. 3 Illustration of the final correction method to determine the pressure
p0

s before the first cap swap (in red) based on an exponential extrapolation
of the pressures pi

s obtained after i iterations of the cap swap (in blue).
This method relies on the theoretical expectation (4) but does not require
us to input Vg/Vl ,kh,T , thus yielding very accurate results (here p0

s − pa =

2.185bar).

tio (p1
s − pa)/(p0

s − pa)−1 (using a pressure measurement cap to
measure p0

s , opening the bottle, closing it again, shaking vigor-
ously, and measuring p1

s ). The results are shown in figure 2. The
linear fit gives a correction factor ≈ 1.38(Vg/Vl), but obtaining a
zero intercept required us to add to the ‘bottle’ Vg an additional
ad hoc 23cm3 to account for (i) the ‘dead’ gas volume inside the
pressure gauges and tubing, and (ii) the visible deformation of
the plastic bottles under pressurisation.

The first correction method that we attempted consisted in
computing p0

s from p1
s ,Vg/Vl ,kh,T using the theoretical formula

(4), much as sketched in figure 2 (we had typical values of
Vg/Vl ≈ 0.15). However, this method was not used in the final
data plotted in figure 8 of the paper because of the discrepancy
between predicted and actual correction factor, and the uncer-
tainty about the extra gas volume due to the pressure gauge, tub-
ing and bottle deformation.

2



Final correction method. Instead, we used a different and
more robust correction method. Instead of measuring p1

s only
once, we performed the cap swap procedure at least two more
times (opening the bottle, closing it, shaking vigorously, mea-
suring p2

s , etc) in order to obtain a series of measurements
p1

s , p2
s , p3

s , p4
s , as shown in figure 3. The correction was then

straightforward: we fitted a straight line through the set of points
{(i, log pi

s)} (in blue), and extrapolated to find (0, p0
s ) (in red) with

good accuracy (without requiring us to input Vg/Vg,kh,T ).
This method was used to correct for the predicted α = DS2`−1

(in figure 8 of the main paper), which proves critical in our work
because of the square dependence of S2 ∝ (p0

s − pa)
2. In order

to compute the error bars on the predicted α, the error on p0
s

that we used was based on the standard error of this extrapolated
fit (varying between 0.2−1%). This correction method therefore
allowed us to determine p0

s with a smaller error than would have
ever been possible by applying the theoretical correction (4) on a
single pressure reading (which carried a ±5% error as explained
above).

1.3 Gas-liquid equilibrium error

Finally, for completeness we mention a last plausible source of
error in the estimation of the ‘real’ c0

s for the ‘real’ pressure p0
s .

Henry’s equilibrium. By using Henry’s law, we assume equi-
librium between the liquid and the gas phase before each cap
swap. This is not necessarily the case on the experimental time
scale, since equilibrium is achieved by the nucleation of dissolved
gas into small bubbles, which then rise to the surface to pres-
surise the gas gap. However any bubble nucleation (creating
a gas/liquid interface) needs to overcome the surface tension γ

(energy which effectively acts as an energy barrier). This can
be expressed quantitatively using the statistical rate of homoge-
neous nucleation ∝ exp{−γ3/ ln2(pcurr

s /peq
s )}, where pcurr

s /peq
s . 1

is the ratio of current to equilibrium pressures (see Ref. 1, equa-
tion 4). The ‘closer’ the system is to equilibrium (pcurr

s /peq
s → 1),

the ‘harder’ it becomes to spontaneously overcome this barrier
(the rate of nucleation→ 0 and is very flat).

Nucleating agents. To overcome this barrier, ‘nucleating
agents’ (usually sand or ceramic pieces) could be added to the so-
lution to promote heterogeneous nucleation. This was attempted
but not pursued further for two reasons. First, because nucleating
agents scratched and damaged the hydrogel beads, making them
susceptible to fracture from the surface (as opposed to internal
fractures, the focus of the main paper). Second, because the gas
bubbles forming on the nucleating agent at high pressure were so
small that they could not spontaneously detach from its surface
within a reasonable amount of time, rendering it ineffective.

Shaking. Therefore, we only promoted CO2 nucleation by me-
chanical agitation, i.e. by vigorously shaking the bottle (but gen-
tly, so as not to damage the hydrogel beads inside). Pressure
measurements were only taken after the pressure had reached a
steady state. We believe that this allowed a sufficiently good equi-
librium to be reached, and that this source of error was probably
negligible, and certainly systematic.

2 Young modulus E measurements
Hertz contact theory. After the pressure measurements, the
bottle was cut open to retrieve the beads (spherical with diam-
eters around 25 mm). Their shape allowed for an easy measure-
ment of the Young modulus using the Hertz contact theory (see
Ref. 2 § 9, and Ref. 3). When two elastic spheres with radius
R1, R2, modulus E1, E2 and Poisson coefficient ν1, ν2) are pressed
against each other, the contact forces depend on the total defor-
mation h via

F = er1/2h3/2 (5)

where 1/r = 1/R1 +1/R2 and e = 4
3 (

1−ν2
1

E1
+

1−ν2
2

E2
)−1.

Practical application. Now consider the case of a single sphere
with R,E,ν compressed against an inelastic plate modelled as
E2 = ∞ and R2 = ∞. We identify r = R and e = 4

3
E

1−ν2 , and find
the force as

F =
4
3

E
1−ν2 R1/2h3/2 (6)

Letting k0 =
4
3

E
1−ν2 R1/2, we invert and write h = k−2/3

0 F−2/3.
In our setup, sketched in figure 4, compression occurred both

on top and at the bottom. If the force measured by the force
sensor is Fm, then the total compression is given by

htot = k−2/3
0 (F−2/3

m +(Fm +W )−2/3) (7)

where W is the weight of the bead.

Protocol. During the experiment, the bead was first placed on
a 0.01g balance without the top touching the upper glass surface.
This gave a bead mass reading m, which was used to calculate the
radius of the bead (assuming a density of 1000 kg m−3). Next, the
balance was tared, the translation stage was slowly raised, and
the vertical translation d of the stage was recorded. Data were
only acquired after the bead touched the top surface.

To obtain E, the d was fitted to Fm via d = k1(F
−2/3
m + (Fm +

W )−2/3)+ b using ‘NonlinearModelFit’ in Mathematica (the code
can be downloaded from the repository doi.org/10.17863/CAM.
60212). Typically, data were taken at 250µm interval up to a com-
pression of 2.5mm on top of the compression due to the mass of
the bead alone. The total time of the experiment was a few min-
utes at most, much less than the poro-elastic time scale of the
bead.4 Also note that when the bead was compressed for a short
period of time (≈ 20s), only a very small drop in the force reading
was observed (approx 0.1g on the balance), which we attribute
to the surface wetting (explained below) rather than stress relax-
ation.

Results and errors. Typical results are shown in figure 5. The
best-fit E value (here E = 16658Pa) reproduces the data very well.
The fit typically has a very low standard error (of order 1%),
which we determined for each experiment and plot as error bars
in the main paper.

We also verified that measuring E after the end of an experi-
ment (in the presence of an internal gas-filled crack) did not sig-
nificantly change E. For the bead shown in figure 5, we found
E = 16546Pa, i.e. less than 1% difference. However, E was al-
ways measured prior to the internal cracking for better accuracy
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Fig. 4 Setup for measurement of the Young modulus E.

Fig. 5 Fitting of force/compression data to obtain E, here shown in a
typical experiment giving E = 16658Pa.

and consistency.
For completeness we mention a potential source of error, which

proved negligible in our measurements. Hydrogel beads are (of
course) wet on the surface, which cannot be dried reliably be-
cause water would continually exude via osmosis. As a result,
the glass surface is inevitably wetted when the bead is placed on
it. On the upper surface this results in a slight upward surface
tension force, reducing the mass reading on the balance (some-
times causing a negative reading of order 0.3g, although a neg-
ative reading is taken to be zero in our data). However, we ne-
glected this capillary force is our measurement since the other
forces involved (Fm and Fm +W) are much larger.

3 Image acquisition and processing

3.1 Acquisition

The Canon XC10 4K camcorder was supported by a tripod that
allowed the lens to point vertically downwards, about 1 m above
the bead (with aperture f8-f10). As the camera was placed far
away and had a long focal length (150−200 mm), it approximated
an orthographic camera reasonably well (with an angle deviation
of < 3◦ computed from the focal length and the XC10 sensor size
13.2 mm × 8.8 mm).

Our mirror system employed four mirrors at 45◦ from each
other about to create four distinct ‘virtual horizontal’ views. The
mirrors were supported by a 3D-printed holder designed specifi-

cally for our setup, using photo-sensitive resin at a high resolution
of 0.1 mm, ensuring precise alignment. The mirrors were cut into
a specific trapezium shape to make the setup more compact (to
minimize perspective errors) while ensuring a sufficient field of
view.

3.2 Contour fitting and filtering
The objective of our image analysis was to reliably extract the
contours of the crack from each of the views (see figure 3a-d in
the main paper). All image processing codes used below can be
downloaded from the repository doi.org/10.17863/CAM.60212.

Background subtraction and binarisation. An early frame in
the video was taken as the background frame for subsequent sub-
traction. The background frame had to be taken after the bead
has been placed in the water tank because the bead itself intro-
duces some difference to the original background due to its opti-
cal absorption and the imperfect matching of refractive indices.

Image were then binarised with a threshold set manually, which
needed adjustment only in the rare cases when dust particles on
the water surface floated into the field of view.

Contour detection. Contours were then detected in the bina-
rised image. Conventionally, a cycle of erosion and dilation would
be performed on the binarised image before contour detection in
order to reduce noise, but this was not done here since we strived
to achieve pixel resolution. Instead, we first computed a dilation
of the polygon formed by the convex hull of the detected con-
tours from the previous frame, and used it as a mask to block out
anything far away from the crack.

Next, the detected contours in the current frame were filtered
by their area. Any contour with an area less than a critical area of
20 Pixel2 was ignored, and the rest of the contours formed a list
of points which were fed into the ellipsoid fitting algorithm in the
next stage. The contour detection algorithm was implemented
using the robust Python interface ‘OpenCV’5, achieving near pixel
resolution.

Finally, the calibration length-scale of the images (pixel to
world coordinates) was obtained from the known diameter of the
bead holder. The contours from each view were rotated upright
using the vertical edge of the bead holder as a reference.

Two minor issues are worth mentioning. First, because the
background frame was taken when the bead (with an internal
crack) was already in water, some data would invariably be lost
in the frames that immediately followed the background frame.
This was because the crack would not grow sufficiently to gen-
erate sufficient image difference for the contour detection algo-
rithm. Typically, 50 frames (corresponding to 2 s) immediately
after the background frame were discarded. Second, the detected
contours could be nosier when a view imaged almost directly the
crack’s thin side (on the ‘edge’ rather than on the ‘face’ of the
‘penny’). This reduced image difference and negatively impacted
contour detection. Typically, the binarisation threshold was re-
duced in such cases to ensure that the entire crack could be de-
tected, but this inevitably introduced more noise in the contours
(this error was quantified by sub-pixel averaging using our high
temporal resolution, as explained in the main paper, and plotted
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as error bars in figure 6b).

3.3 Ellipsoid fitting

Introduction. The theory of penny-shaped cracks predicts an
axisymmetric ellipsoidal shape (i.e. with two major axes of equal
radius R, also called a spheroid). This means that when the crack
is projected onto different views, all detected contours are ex-
pected to be elliptical. The three-dimensional reconstruction of
the crack was therefore based on the assumption that the crack
was ellipsoidal in shape (although axisymmetry, i.e. the equality
of the two major radii, was not enforced a priori to allow us to
verify it). It was indeed verified a posteriori that this ellipsoidal
shape turned out to be very accurate, as well as the axisymmetry
(the two major radii were very nearly equal).

Our task was therefore to find the best fitting 3D ellipsoid,
whose projections were closest to the detected contours in all four
views in terms of squared error. However, least-squared fitting
can be very sensitive to the noise in the contours detected in the
previous stage. This requires us to first perform noise reduction
(or filtering) on the detected contours.

Filtering (step 1). The detected contours from each view were
first centered based on the center of mass of all the points on
the contours. Next, the convex hull of each contour was com-
puted and scaled to 80% of its original size. Any point inside the
scaled convex hull was removed from contours. This effectively
removed points that were clearly interior to the elliptical region
(see figure 3e, step 1 in the main paper).

Filtering (step 2). Next, the remaining parts of the contours
were fitted to the 2D ellipse equation (ax2 +2bxy+cy2 +dx+ey+
f = 0) using a least squared fitting algorithm.6 For each point,
a residue (equal to the value of ax2 + 2bxy + cy2 + dx + ey + f )
was computed, and half of points on the contours were discarded
based on the residue value (see figure 3e, step 2 in the main pa-
per). Finally, the remaining points were centered based on a fur-
ther least squared ellipse fitting.

This represented a very strict filtering algorithm which gave
good results most of the time, but which was unfortunately not
always successful (when the detected contours were extremely
noisy, we corrected manually).

Fitting. The four filtered and centered contours were finally
used in the least squared fitting of a 3D ellipsoid, here arbitrarily
centred at the origin (x,y,z) = (0,0,0) (since its relative position
and orientation in the bead was obtained but deemed irrelevant).

Such a 3D ellipsoid can be represented as a positive-definite
matrix D with xT Dx = 1, allowing its projections on each imaging
plane to be computed.7 The projected 2D ellipse were also simi-
larly represented as a positive-definite matrix D′ with xT D′x = 1.

The error to be minimized was thus defined as (xT D′x− 1)2/l
where l is the number of remaining contour points in the view
considered. The errors from each of the views are summed and
minimized using ‘scipy.optimize.minimize’ in Python.8 However,
such a direct fitting required an initial guess to converge, which
was generated by the method given in Ref. 7.

Finally, the projection of the fitted 3D ellipsoid using our al-

gorithm can be plotted with the remaining contour points after
filtering to illustrate the goodness of the fit (see figure 3f in the
main paper).

4 Axial vs radial diffusion

Here we give more details on the scaling arguments and numeri-
cal simulations performed to confirm the accuracy of our (purely
axial) diffusion model.

Formulation. As explained in the main paper, the full (axisym-
metric) two-dimensional diffusion problem for the gas concentra-
tion (in the medium surrounding a crack of negligible thickness)
is complicated by the fact that the regions where Neumann and
Dirichlet boundary conditions are imposed are changing contin-
uously due to the expansion of the crack with a given R(t). It is
governed by the following system of equations in (r,z) ∈ [0,∞)2

1
D

∂c
∂ t

=
1
r

∂

∂ r
(r

∂c
∂ r

)+
∂ 2c
∂ z2 (axisymmetry) (8a)

c(r,z, t = 0) = cb +∆c (initial condition) (8b)

c(r,z = ∞, t) = cb +∆c (far-field) (8c)

c(r = ∞,z, t) = cb +∆c (far-field) (8d)

c(r,z = 0, t) = cb for |r| ≤ R(t) (crack boundary) (8e)

∂c
∂ z

(r,z = 0, t) = 0 for |r|> R(t) (mirror symmetry) (8f)

Change of variables. We now apply the change of variables:

(r̄, z̄, t̄) =
( r

R(t)
,

z
L
,

t
T

)
and c̄ =

c− cb

∆c
(9)

We choose T as the total duration of the experiment, and the
axial (along z) diffusion length-scale L =

√
DT . This change of

variables only significantly affects the PDE (8a), and the boundary
conditions (8e), (8f). The new system, in the reference frame
moving with the crack, is

1
DT

(
∂ c̄
∂ t̄
−T

R′(t)
R(t)

r̄
∂ c̄
∂ r̄

)
=

1
R2(t)

1
r̄

∂

∂ r̄

(
r̄

∂ c̄
∂ r̄

)
+

1
L2

∂ 2c̄
∂ z̄2 (10a)

c̄(r̄, z̄, t̄ = 0) = 1 (10b)

c̄(r̄, z̄ = ∞, t̄) = 1 (10c)

c̄(r̄ = ∞, z̄, t̄) = 1 (10d)

c̄(r̄, z̄ = 0, t̄) = 0 for |r̄| ≤ 1 (10e)

∂ c̄
∂ z̄

(r̄, z̄ = 0, t̄) = 0 for |r̄|> 1 (10f)

Now, the boundary conditions are fixed, but the coefficients in
(10a) are no longer constant. As a result, neither the original sys-
tem nor this new system of equations can be solved analytically.
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Scaling arguments. This new system is however well suited to
analyse the relative importance of each term in (10a) using scal-
ing arguments, as briefly explained in the main paper. Assuming
R(t) = αt we obtain at our ‘final’ target time t = T the following
balance

∂ c̄
∂ t̄
− r̄

∂ c̄
∂ r̄︸ ︷︷ ︸

O(1)

=
1
Pe

1
r̄

∂

∂ r̄

(
r̄

∂ c̄
∂ r̄

)
︸ ︷︷ ︸

radial O(Pe−1)

+
∂ 2c̄
∂ z̄2︸︷︷︸

axial O(1)

(11)

where we define the ‘final’ Péclet number as

Pe =
R2(T )
L2(T )

=
α2T

D
=

αRmax

D
, (12)

either using the maximum time T , or the maximum radius
achieved Rmax = αT .

Since all ‘bar’ variables and derivatives are of order one, (11)
shows qualitatively that a final value Pe� 1 is a necessary (but
not strictly sufficient) condition to neglect radial over axial diffu-
sion, as we have done in the main paper.

Based on our extreme experimental values of α,Rmax, our min-
imum Péclet number is Pe≈ 2 ·10−5×4 ·10−3/(2 ·10−9)≈ 40, and
our maximum is Pe≈ 2 ·10−4×8 ·10−3/(2 ·10−9)≈ 800.

Numerical simulations. To assess the quantitative errors asso-
ciated with our lowest Pe values, the full system of equations (10)
was solved numerically using Matlab’s PDE toolbox (the codes
can be downloaded from the repository doi.org/10.17863/CAM.
60212). The simulation parameters α = 10−5 ms−1 and T = 300 s
were chosen to give Pe= 15, a value two to three times lower than
in any of our experiments, so as to provide a very conservative er-
ror estimate.

A visualisation of the results at the final time are shown in fig-
ure 6a, where we see that the region affected by diffusion does
not extend much beyond the crack edge |r̄| ≤ 1⇔ r < R(t), and
that the axial gradients |∂z̄c̄| are indeed much greater than the
radial gradients |∂r̄ c̄|.

More quantitatively, we focus on a single output variable of
greatest interest: the volume flux through the crack surface. In
the limiting case of fast growth (Pe = ∞) the one-dimensional
axial diffusion model in the main paper provides an analytical
expression to which we will compare the fully two-dimensional
simulations. After applying the convolution integral taking into
account the growth history (as explained in the main paper), this
analytical flux is (in dimensional units)

dV
dt

=
8
3
(πDeff)

1/2
α

2t3/2 +2πR2
0D1/2

eff t−1/2︸ ︷︷ ︸
≈0

, (13)

The second term vanishes assuming a small initial crack R0 =

R(t = 0)≈ 0 (taken as 0.1mm in the simulation).
The results in figure 6b show that:

• The numerical (fully two-dimensional) flux curve (in blue)
is slightly above the analytical flux curve (13) (in red), as
expected since radial diffusion adds to the overall transport.
However at larger times both curves become indistinguishable.

• At Pe = 15, the final (t = T = 300) flux curves are less than 1%
apart. This very small discrepancy is expected to be reduced

much further at the higher Pe = 40− 800, which the main pa-
per focuses on, hence our axial diffusion approximation is very
comfortably confirmed.

• The overall functional dependence of the flux ∝ t3/2 is pre-
served, such that even at lower Péclet numbers (say 1 < Pe .
10 for example), we would expect radial diffusion to merely
change the pre-factor in our expression α = (64/25π)DS2`−1,
but not the linear growth R(t) = αt.

(a)

(b)

Fig. 6 Numerical solution of (10) for parameters corresponding to a
growth that is very slow (α = 10−5 ms−1) and long (T = 300 s), equiva-
lent to Rmax = 3mm and Pe = 15. (a) Final dissolved gas concentration
field (non-dimensional units) c̄(r̄, z̄) at t = T (i.e. t̄ = 1). A value of
c̄ = 1 corresponds to c = ∆c = cs− cb, the far-field excess concentration
compared to the boundary. (b) Volume flux dV/dt across the grow-
ing crack (in m3 s−1): comparison between numerical result (blue) and
Pe = ∞ analytical (13) (red). Agreement is almost perfect at the target
time T = 300.
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