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I Statistical mechanics of the TWLC
Here we use standard methods of statistical mechanics to get
some important relations for the analysis presented in the main
text. To this end, we first write the discretized free energy func-
tional (E =

∫ L
0 ε0(Ω)ds) at the base-pair level, with ε0 given by

Eq. (2):

E = a

2

N∑
n=1

[A1Ω2
1(n) +A2Ω2

2(n) +CΩ2
3(n)

+ 2GCΩ2(n)Ω3(n)]

= a

2

N∑
n=1

[A1Ω2
1(n) +A2[Ω2(n) + G

A2
Ω3(n)]2

+ C̃Ω2
3(n)],

(S1)

where Ωi(n) with i= 1,2,3, represents the local deformation i at
position n. Therefore, the probability that the system is in a state
with energy E is given by:

P = e−βE

Z
, (S2)

where Z is the partition function:

Z =
∫

D [Ω]e−βE , (S3)

and D [Ω] is the infinitesimal “volume” element in the Ω space.

As described in the main text, the probability-weight P ({Ωi})
of finding the system with a characteristic Ωi, is obtained by inte-
grating out Eq. S2 along the two other local deformations. Then,
for Ω3 we get the following relation:

P ({Ω3}) = 1
Z

N∏
n=1

∫∫
e
− βa2 [A1Ω2

1+A2(Ω2+ G
A2

Ω3)2+C̃Ω2
3]
dΩ1dΩ2

= 1
Z

(
4π2

β2a2A1A2
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βa
2 C̃Ω2

3 .

(S4)

The analogous calculation for Ω2 gives:

P ({Ω2}) = 1
Z

(
4π2

β2a2A1C

)N/2 N∏
n=1

e−
βa
2 Ã2Ω2

2 . (S5)

Therefore, the rescaled constants C̃ = C
(

1− G2

A2C

)
and Ã2 =

A2

(
1− G2

A2C

)
that appear in the exponential functions above,

imply the softening of the twisting and bending response, respec-
tively.

One additional observation is that the average 〈O〉Ω3 of any
observable O at a constant value of Ω3 is found through the fol-

lowing equation:

〈O〉Ω3 = 1
Z

∫
D [Ω1,Ω2]Oe−βE . (S6)

Therefore, the averages 〈Ω1〉Ω3 and 〈Ω2 + G
A2

Ω3〉Ω3 are found to
be zero. This key result implies that the internal torques of the
molecule, M1 and M2, are also zero.

Finally, it is worth noting that the calculations presented here
can be generalized to the ones of a ring molecule by replacing the
energy of the system (Eq. (2)) by the appropriate one (Eq. (3)),
and rewriting it in terms of the deviations δΩi(s) = Ωi(s)−Ω0

i (s)
of the deformations Ωi(s), in a similar way to what is done at the
beginning of the next section. The outcome of this approach is
that we obtain similar equations to the ones displayed here but
with Ωi replaced by δΩi: 〈δΩ1〉δΩ3 = 0 and 〈δΩ2 + G

A2
δΩ3〉δΩ3 =

0.

II Internal torque components

The energy density for a torsionally constraint ring is given by
Eq. (3), where the term with Lagrange multiplier µ enforces the
bending (Ωb = Ω1 + Ω2) to take place along the unitary vector
x̂= sin(χs)ê1 +cos(χs)ê2 pointing in the direction perpendicular
to the plane spanned by the molecule. The term with the second
multiplier λ accounts for the presence of twist excess ∆χ = χ−
χ0.

The components of the internal torque are found by comput-
ing the derivative of the energy density with respect to the elastic
strain: Mi = δε

δΩi . Here we write the results in terms of the de-

viations δΩi(s) = Ωi(s)−Ω0
i (s) of the deformations Ωi(s) with

respect the minimum energy state Ω0
i (s) (given in Eq. (4)).

Using δΩi(s), the energy density is rewritten as:

ε(s) = A1
2 δΩ2

1 + A2
2 δΩ2

2 + C

2 δΩ
2
3 +GδΩ2δΩ3

+εG(s), (S7)

where εG(s) ≡ ε(Ω0
1,Ω0

2,Ω0
3) represents the ground state energy

density, thus, independent of δΩi. Note that the ground energy
density is

εG(s) = − µ2

2A1
sin2 (χs)− µ2

2Ã2
cos2 (χs)

− λ
2

2C̃
+µλ

G

Ã2C
cosχs, (S8)

and its contour integral∫ L

G

εG(s) ds=−
(
kBT

2
lb
R2

0
+ C̃

2 ∆χ2
)
L, (S9)

is formally identical to the energy of torsionally stressed ring
(with radius of curvature R0 and the average excess twist density
∆χ) made from isotropic TWLC with the bending and twisting
moduli Ã and C̃, respectively1. Since ∂ε/∂Ωi = ∂ε/∂(δΩi), we
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find

M1 = A1δΩ1, (S10)

M2 = A2δΩ2 +GδΩ3, (S11)

M3 = CδΩ3 +GδΩ2. (S12)

The tangential component of the derivative of the internal
torque (M = M1ê1 +M2ê2 +M3ê3) with respect s is obtained
by using the relation in Eq. (1) and by noticing that the only non-
vanishing terms are the following:

dM
ds
· ê3 =

[
M1

dê1
ds

+M2
dê2
ds

]
· ê3 + dM3

ds

=M2Ω1−M1Ω2 + dM3
ds

=A2Ω1δΩ2−A1Ω2δΩ1 +GΩ1δΩ3+

d

ds
(CδΩ3 +GδΩ2).

(S13)

III Compatibility relation

The derivative of the local reference frame with respect to the
intrinsic length, s, and time, t, are expressed by the relation:

∂êα
∂s

= ΩT(s, t)× êα(s, t), (S14)

∂êα
∂t

= ω(s, t)× êα(s, t). (S15)

Compared to Eq. (1) we have simplified notation in Eq. (S14)
by defining a total strain vector ΩT(s) = Ω(s) + χ0(s)ê3(s),
where χ0 is the intrinsic twist rate. Now if we consider the com-
bined action of space and time on the reference frame, since s and
t are independent variables, they must commute and we could
write the equation:

0 = ∂

∂t

∂êα
∂s
− ∂

∂s

∂êα
∂t

= ∂

∂t
[ΩT× êα]− ∂

∂s
[ω× êα]

=∂ΩT
∂t
× êα+ΩT×

∂êα
∂t
− ∂ω
∂s
× êα−ω×

∂êα
∂s

=
[
∂ΩT
∂t
− ∂ω
∂s

]
× êα+ΩT×

∂êα
∂t
−ω× ∂êα

∂s

=
[
∂ΩT
∂t
− ∂ω
∂s

]
× êα+ΩT× [ω× êα]

−ω× [ΩT× êα]. (S16)

Using the property of the cross product a× (b× c) = b(a · c)−
c(a · b) on the last two terms we get

[
∂ω

∂s
− ∂ΩT

∂t

]
× êα =ω[ΩT · êα]− êα[ΩT ·ω]−ΩT[ω · êα]

+ êα[ω ·ΩT]

=ω[ΩT · êα]−ΩT[ω · êα(s, t)]

=ω[êα ·ΩT]−ΩT[êα ·ω(s, t)]

=êα× [ω×ΩT]

=− [ω×ΩT]× êα.

As the above relation holds for any component α, we get the
compatibility relation:

∂ΩT
∂t
− ∂ω
∂s
−ω×ΩT = 0. (S17)

Using the fact that the intrinsic twist rate χ0 is independent of
time, one can rewrite the above equation into the following form:

∂Ω(s, t)
∂t

= ∂ω(s, t)
∂s

+ω(s, t)×Ω(s, t). (S18)

The dependence on the reference frame could be worked out

∂Ωα
∂t

êα+ Ωα
∂êα
∂t

= ∂ωα
∂s

êα+ωα
∂êα
∂s

+ω×Ω

∂Ωα
∂t

êα+ω×Ω = ∂ωα
∂s

êα+ΩT×ω+ω×Ω

∂Ωα
∂t

êα = ∂ωα
∂s

êα+ΩT×ω

From this equation it is immediate to show the projection along
the ê3 axis:

∂Ω3
∂t

= ∂ω3
∂s

+ Ω1ω2−Ω2ω1 (S19)

The angular velocity ω3 on the left could be obtained from
the torque balance equation, while the last term is related to the
writhe and could be rewritten as Ω1ω2−Ω2ω1 = (ê3×∂sê3) ·∂tê3

IV DNA supercoiling
For closed DNA molecules the number of times that the two
strands winds around each other (the linking number Lk) is a
topological invariant. Further more, under this circumstances the
well known White-Fuller-Calugarenau theorem3 must be satis-
fied. This theorem states that the linking number can be ex-
pressed as the sum of two quantities: twist (Tw) and writhe (Wr).
The former represents the extent of rotation of the two strands
around the DNA axis and the latter represents the number of self-
crossings of the DNA centerline.

The DNA double helix has a preferred configuration where the
two strands wrap around each other approximately once every
10.5 base pairs. In this configuration the linking number has a
characteristic value Lk0 ' N/10.5. A DNA molecule whose link-
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Elastic parameter From reference2 Simulations at 15 K Simulations at 300 K
oxDNA1 oxDNA2 oxDNA1 oxDNA2 oxDNA1 oxDNA2

β300A1 51 51 53 53 52 52
β300A2 30 37 30 36 30 36
β300C 77 74 98 95 81 78
β300G 0 22 0 24 0 22
β300 C̃ 77 66 98 79 81 65
β300Ã2 30 31 30 30 30 30
lb 38 38 38 38 38 38

Table S1 Elastic parameters reported in nm and computed using Eq. S22 for: simulations reported on reference 2 (with N = 150 bp, T = 300 K and
[Na+] = 0.5M) and simulations performed here (with N = 312 bp and [Na+] = 1M) at two different temperatures: T = 15 K and T = 300 K. Note
that β300 = 1/(kB 300K).

ing number differs from the one in the relaxed state is said to be
supercoiled. Therefore, the superhelical density:

σ = ∆Lk
Lk0

= Lk−Lk0
Lk0

, (S20)

is a quantitative measure of DNA supercoiling. In this manuscript
we work mainly with molecules that are 312 bp long. There-
fore we expect Lk0 = 30. While the undertwisted molecule is
initialized with Lk = 29, the overtwisted molecule has Lk = 31.
Therefore we expect for these cases a small level of supercoiling
|σ|= 0.033.

V Elastic parameters
The elastic parameters of the oxDNA model have been thoroughly
characterized in reference4 for linear DNA molecules, 150 bp
long at a temperature of 300 K and using a salt concentration
of [Na+] = 0.5M . There, the authors found that the local stiff-
ness parameters associated to the deformation at the single base-
pair level (m = 1 data in supplementary Fig. S3 of4 and also
reported in SM of2) are: for oxDNA1 βA1 = 51 nm, βA2 = 30
nm, βC = 77 nm and G = 0 while for oxDNA2 βA1 = 51 nm,
βA2 = 37 nm, βC = 74 nm and βG= 22 nm. It should be stressed
here that the β dependence of these parameters (that does not ap-
pear explicitly in the cited references) comes from our choice of
notation when defining the free energy of the system (Eq. (2)).
By using these values, the rescaled persistence length (lbI = 37.8
nm, lbII = 38.14 nm), bending rigidity about ê2 (βÃ2I = 30 nm,
βÃ2II = 30.46 nm) and torsional stiffness (βC̃I = 77 nm and
βC̃II ' 61 nm) can be found for both models: oxDNA1 (I) and
oxDNA2 (II). The ratio C̃II/C̃I = 0.791 is used in the main text
when comparing the diffusion coefficient of both models. We will
also use C̃I/ÃI = 2.04 and C̃II/ÃII = 1.6 in order to compute
the bending modes (Eq. (S30)).

Temperature dependence

Here we investigate the effect of the temperature on the value of
the elastic parameters for the oxDNA models. To this end, MD
simulations were performed on 312 linear DNA molecules at a
salt concentration of [Na+] = 1M and using only GC pairs in the
sequence. Each simulation was run for 5×107 timesteps while the
trajectories were recorded every 105 timesteps. A total of eleven
independent replicas were used for: oxDNA1 (15 K), oxDNA1

(300 K), oxDNA2 (15 K) and oxDNA2 (300 K). For each case, we
found the local deformations (see section VII for details) and we
computed the following correlation matrix (see reference4):

Ξµν(m)≡

〈[
n+m−1∑
k=n

Ωµ(k)

][
n+m−1∑
l=n

Ων(l)

]〉
(S21)

Finally, the m-step stiffness matrix is defined as:

M(m)≡ m

a
[Ξ(m)]−1, (S22)

from which the elastic constants were computed. Results are
shown in Fig. S1. Continuous lines represent the values ob-
tained from the simulations at T = 300 K, while dashed lines rep-
resent values obtained at T = 15 K (and rescaled by the factor
15/300 = 0.05). We observe that for the same oxDNA model, the
elastic parameters A1, A2 and G do not change with the tem-
perature (apart from the re-scaling constant 0.05). The torsional
stiffness C on the other hand, is slightly larger for the case T = 15
K.

The local stiffness parameters associated to the deformation at
the single base-pair level (m= 1) are summarized in Table S1 for
three different cases. These results suggest that when decreasing
the temperature in our simulations from 300 K to 15 K, C is the
only elastic constant that is significantly affected. However, this
change is such that the ratio C̃II/C̃I is essentially the same for
the three cases: 0.79 (for the elastic constants in2,4) and 0.8 in

Fig. S1 Elastic parameters obtained from Eq. (S22), as a function of the
base-pair distance m.(A)-(B) Show results for oxDNA1 and oxDNA2,
respectively. Continuous and dashed lines represent results from simula-
tions at T = 300 K and T = 15 K,respectively.
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the other two cases. Therefore, all these results are in good agree-
ment with the theory described in this manuscript, which predicts
D̃II/D̃I = C̃II/C̃I ∼ 0.8.

Sequence dependence of the renormalized twist modulus

The values of the elastic parameters for different DNA sequences
simulated with oxDNA models, are reported in Fig.S4 and Table
S2 of reference4. By entering those values in the equation that

defines the renormalized twist modulus (C̃ = C
(

1− G2

A2C

)
), we

find the values of C̃I and C̃II reported in Table S2 for the two
oxDNA models. We observe that for both models, the largest
twist modulus is the one of the poly CG sequence. On the other
hand, the poly AT sequence have the smallest twist modulus. This
might be related to the fact that decreasing the CG content tends
to soften the elastic response of the DNA. When comparing the
values of C̃ for the same oxDNA model, we found that there is a
change of approximately 12.5% for the two sequences mentioned
above. Remarkably, the ratio C̃II/C̃I does not exhibit strong de-
viations for the sequences studied here.

Sequence C̃I C̃II C̃II/C̃I

Avg sequence 116 82 0.70
poly AT 108 76 0.70
poly CG 123 87 0.70
poly AC 115 82 0.71
poly AG 115 80 0.70
A-rich 111 80 0.72
C-rich 118 82 0.69

Table S2 Renormalized twist modulus C̃I (for oxDNA1) and C̃II (for
oxDNA2), reported in nm and computed with the values of the elas-
tic parameters found in reference 4, for the sequence shown in the first
column. The last column shows the ration C̃II/C̃I .

VI Details of simulations
The Langevin integration of the system was carried out in the
most recent implementation5 of the oxDNA model into the
LAMMPS6 (Large Scale Molecular Massively Parallel Simulator)
engine. Briefly, this model describes DNA at the single nucleotide
level by means of a rigid body with additive-pairwise interaction
sites. The potentials involved in the interactions accurately rep-
resent: the hydrogen bonding between complementary bases, the
connectivity of the sugar-phosphate backbone, the excluded vol-
ume between nucleotides and also the stacking, coaxial-stacking
and cross-stacking forces. Hence, if U represents the total poten-
tial field experienced by the nucleotides and r their position, then
the system obeys the Langevin-equation:

m
d2r
dt2

=−ξ dr
dt
−∇U +

√
2kBTξΛ(t), (S23)

where m is the mass of the nucleotide, ξ is the friction and
Λ(t) is the white noise term with zero mean which satisfies
〈Λα(t)Λβ(s)〉 = δαβδ(s − t) along each Cartesian coordinate
represented by the Greek letters. The form of the last term in
Eq. (S23) ensures that the equipartition theorem is satisfied.

Mapping of simulation units – The relation between one sim-
ulation unit (SU) in the oxDNA code and the international system
(SI) units, is the following: mass (M = 100AMU = 1.66× 10−25

kg), temperature (T = 3000 K), length (Ls = 8.518× 10−10 m),
energy (εs = kBT = 4.142× 10−20 J) and force (F = εs/Ls =
4.863× 10−11 N). The simulation time τLJ = Ls

√
M/εs = 1.7

ps, comes naturally from the above quantities and it is employed
to define a constant integration timestep ∆t = 0.001τLJ of the
Langevin equation (S23). In principle, τLJ could be used to com-
pare results with experiments. However, since the hydrodynamic
effects are neglected in the Langevin formalism, one needs to be
cautious in interpreting time units in this type of coarse-grained
simulations.

It is also important to recognize that there are two further time
scales in the system with an intuitive physical meaning. One is the
inertial time τin = m/ξ, which gives the characteristic time after
which the velocity of a bead becomes uncorrelated. The second
is the Brownian time τBr = (2r0)2/D, which gives the order of
magnitude of the time it takes for a bead to diffuse across its own
diameter (2r0). Here D is the translational diffusion constant for
a bead, given through the Einstein relation by D = kBT/ξ. In the
approximation in which a nucleotide diffuses like a sphere with
radius r0 = 1 nm, we can use Stokes’ law ξ = 6πηr0, where η is
the viscosity of the fluid. Therefore, setting the values of D (or
similarly the value of η) and m, will resolve the two additional
timescales. For example, if we consider that the mass of indi-
vidual nucleotides is (m = 315.75AMU = 5.24× 10−25 kg) and
they are immerse in water (η = 1.1× 10−3kgm−1s−1), we find
τin = 5.05×10−14s' 0.03τLJ and τBr = 2.5×10−10s' 150τLJ ;
with the timescales separated by several orders of magnitude
(τin� τLJ � τBr).

As pointed out in references7,8, due to the limitations in our
calculations when neglecting the hydrodynamic effects, the dif-
fusion coefficient (and then also τin) could be seriously underes-
timated. Therefore, we need to bear in mind the timescales of
interest in our system, before choosing the magnitude of D. For
instance, in order to investigate the fast process of twist diffusion
(not to be confused with D), which occurs at short time-scales,
we use the default value of the inertial time (τin = 0.03) given in
the original parametrization of the model. On the other hand, the
supercoiling of the molecule occurs at a much larger time-scale.
Setting such a low inertial time would lead to prohibitively slow
writhing dynamics and unfeasibly long simulations. Instead we
chose larger diffusion coefficients (see section IX for details) such
that τin ≤ τLJ ≤ τBr. This assumption means that bodies have
more inertia than in reality and that processes which occur on
time-scales below the Brownian time are not resolved accurately,
however this is of no practical consequence for our purpose.

It should be emphasized here that this artificial change of the
diffusion, makes difficult to map the simulation time onto real
units. We then prefer to report our results in units of τLJ and to
focus on the comparison of times between similar processes.

Additional features of the MD simulations – In the simu-
lations, a ring molecule of N = 312 bp was initialized with a
deficit of twist. However, when not set properly, undertwisting
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encourages the local melting of the base-pairs, creating small re-
gions where the dsDNA splits into its two single-strand compo-
nents and therefore where the local twist can not be defined. To
avoid this, we set appropriate physiological and geometrical con-
ditions: (i) we used a High salt concentration of [Na+] = 1M .
The Debye Huckel potential implemented in the oxDNA model
allows to effectively modulate the electrostatic interaction of the
nucleotides by setting the salt concentration of the system. A
high value corresponds to the screening of the negatively charged
phosphates of DNA, which prevents melting. (ii) We simulated
poly-C molecules. Because G-C pairs form three hydrogen bonds,
while A-T pairs form only two, the hydrogen bonding energy of
the former is larger than the latter in the oxDNA model. Therefore
we use a DNA sequence made of only G-C pairs (homopolymer).
As discuss in the main text, this also ensures that the elastic pa-
rameters (G,C,A1 and A2) do not depend on the position (s)
along the dsDNA. (iii) We set a low level of supercoiling in the
initial configuration. Under no torsional stress the total twist of
a 312 bp ring molecule is Tw0 = 30. At t = 0 we start from a
conformation with Tw = 29 and Wr = 0. This corresponds to
a supercoiling σ = ∆Tw/Tw0 = −0.033. This deficit was split
among half of the ring so the local twist deficiency is small enough
to avoid melting. This choice also discourages the formation of
strong deviation from the planar ring configuration. (iv) Simula-
tions were run at a low temperature (T = 15 K). Besides favoring
the hybridization of the two single strands, such a low temper-
ature also allows to study the twist Diffusion in the absence of
thermal fluctuations and in consequence less simulations have to
be performed to get a good statistics. In addition, as discussed
in reference1; in short, constrained and highly bent DNA, ther-
mal fluctuations are not the main factor influencing the shape of
the molecule. Finally, we also analyzed the analogous scenario
for over-twisted molecules of DNA using the same conditions of
the system and opposite supercoiling level (σ = 0.033). As men-
tioned in the main text, when measuring local twist diffusion (see
Fig. 3), the system was confined in between two parallel planes
to avoid the writhe formation. On the other hand, when we study
the evolution of total twist (see Fig. 5), the planes were removed.

VII Computation of local Twist
In order to obtain the local deformations (Ωi) from our simula-
tions, we consider DNA as a discrete inextensible elastic rod. As
described in reference4, this discretization allows to define a lo-
cal reference frame {ê1(n), ê2(n), ê3(n)} at base-pair n along the
rod, using the following method. In the oxDNA model the ori-
entation of individual nucleotides is given by two vectors: the
normal to the plane of the base (n̂), which follows the 5′−3′ di-
rection of single strands; and the unitary vector (b̂), pointing from
the backbone site to the base site. The intrinsic nucleotide triad
is completed with a third axis defined by n̂× b̂. When the DNA
molecule is fully hybridized, both, the vectors n̂1, n̂2 that are part
of the triads from two complementary nucleotides in a base-pair
and their respective center of mass (r̂1, r̂2), become a natural
choice to define the base-pair local reference frame. The tangent
to the centerline of the dsDNA is ê3 = (n̂1− n̂2)/|n̂1− n̂2|. The
vector ê2 = (p̂−(p̂ · ê3)ê3)/|p̂−(p̂ · ê3)ê3| is defined as the projec-

tion of the vector p̂= r̂1− r̂2 connecting the two centers of mass,
onto the plane perpendicular to ê3. The last vector is defined as
ê1 = ê2× ê3, and it points in the direction of the symmetry axis
of the DNA grooves.

The local deformations can be computed from the rotation ma-
trix, R(n) = TT (n)T(n+ 1), which generates the frame at seg-
ment n+ 1 from that at segment n. Here the 3× 3 orthogonal
matrix (T), is constructed by using as columns the local refer-
ence frame vectors: T(n) = [ê1(n), ê2(n), ê3(n)] and its transpose
is represented by TT (n). At each position n along the rod, the
components Rij(n) of the matrix R(n) are related to a rotation
vector θ(n) = θ1(n)ê1(n)+θ2(n)ê2(n)+θ3(n)ê3(n) according to
the following equation:θ1θ2

θ3

= θ

2sinθ

R32−R23
R13−R31
R21−R12

 , (S24)

where θ satisfies the relation: trace(R) = 1 + 2cosθ. Finally, the
local deformations can be defined as the deviations of the compo-
nents of θ(n) from their respective mean value (θi) in the relaxed
configuration (under no mechanical stress):

aΩi(n) = θi(n)−θi, (S25)

where a = 0.34 nm is the mean distance between consecutive
base-pairs. The values of θi have been obtained from simulations
of linear molecules in reference4. For oxDNA1 it was found that
θ1 = θ2 = 0 and θ3 = 34.8°, while the same quantities for oxDNA2
are: θ1 = 0, θ2 = 2.6° and θ3 = 34.1°. Note that in the main text
we use χ0 = θ3/a as the value of Ω3 in the relaxed sate of the
DNA.

Average of the local deformations – In order to obtain the
time evolution of the local deformations, we ran 100 independent
configurations of the system described in section VI while we keep
the temperature constant at T = 15 K. All the samples start with
an excess/deficit of one helical turn in half of the ring and the
local twist in this region is locked during equilibration. After this
stage, we release the constraint on the over/under twisted region
and we keep track of the local deformations over the entire ring
for 1.5×104τLJ . In practice this is done by computing the aver-
age 〈Ωi(n)〉 over configurations of the local deformations at the
same time after the twist release.

In Fig. 3 of the main text we report the values obtained for
Ω3(n) in the undertwisted case at different times. The results for
the overtwisted case are shown in Fig. 4. In both, simulations
were run at 15 K. To complement this, here we show the local
deformation Ω3(n) when the temperature is fixed at T = 300 K
(see Fig. S2). It is clear that by increasing the temperature of
the system, the signal becomes noisier compared to the one de-
picted in Fig. 4 and the error of the diffusion coefficient com-
puted from simulations becomes larger: D+

I = 0.219±0.027 and
D+
II = 0.168±0.022 bp2/τLJ. These values are in good agreement

with the ones obtained at T = 15 K. As pointed out in the main
text, running simulations at room temperature would require to
have more statistics and therefore it would be less efficient.

6 | 1–10Journal Name, [year], [vol.],



Fig. S 2 Local twist deformation (Ω3) as function of the contour length when the temperature of the system is kept constant at T = 300 K.
Color lines (blue, green, yellow and red) represent results at different time-steps (t = 0,5,2500 and 15000τLJ). The diffusion coefficients found are
D+
I = 0.219±0.027 and D+

II = 0.168±0.022 bp2/τLJ, in agreement with the values obtained at 15 K.

VIII Computation of the Diffusion coefficient
The diffusion equation (9) has an explicit solution that can be
conveniently written in terms of the Fourier coefficients. Consid-
ering the periodic boundary conditions of our system (for ring
DNA) this leads to:

δΩ3(t,n) =
∑
k

W̃k(t)e−
2πk
N n =

∑
k

W̃ke
− 4π2k2D̃

N2 te−
2πk
N n

(S26)
where k ∈ Z and the Fourier coefficients W̃k are obtained from
the initial condition W̃k =

∑N
n=1 δΩ3(0,n)e

2πk
N n. Notice that this

relation holds true also in the continuum limit where n
N → s ∈

[0,1]. If we focus our attention to a single modes k, we observe
that comparing the Fourier coefficients at different timesteps it is
possible to obtain the time-dependence:

ln |W̃k(0)|
|W̃k(t)|

= D̃
4π2k2

N2 t (S27)

We have computed the Fourier analysis of twist for each
timestep of the trajectory. Then, by using a linear fit of the Fourier
coefficients via Eq. S27 (see Fig. S3), we were able to estimate
the diffusion coefficient in the different models. The value we
presented is a weighted average on the first 5 coefficients (the
k = 0 mode is obviously excluded also). In our simulation, the
diffusion coefficients computed on higher modes have to be ex-
cluded because the white noise combined with faster relaxation
time (τ ∝ 1/k2) reduce the number of data available for the expo-
nential fit (see Fig. S3 inset). The error in the diffusion coefficient
is obtained from the standard error-propagation formula applied
to the errors resulting from the previous fit.

In the oxDNA2 model (G> 0) there is a further observation to

do: the twist Ω3 shows waves due to the coupling with Ω2 (see
Fig. 4(D)). These waves have a characteristic frequency equal to
the pitch of DNA, one turn every 10.5 base pairs. If we recon-
struct this signal using only the low frequencies of the Fourier
Transform of Ω3, we get a curve that passes through the center-
line of the wave. From the fit of the diffusion equation to the data
we obtain a curve that follows basically the same trajectory. The
same behavior is found for Ω2 in agreement with our theory (see
also Fig. 4).

IX Evolution of the total Twist
At any fixed timestep from the simulation, the total twist (Tw)
is found from adding the value of the local twist θ3 along all the
base-pairs:

Tw = 1
2π

N∑
n=1

θ3(n). (S28)

Therefore, the sum of the twist deformations is related to the de-
viations of the total twist from its value under no torsional stress
(Tw0) according to:

Tw−Tw0 = 1
2π

N∑
n=1

aΩ3(n). (S29)

When the ring molecule is constraint by the two parallel planes,
the initial writhe is preserved during the whole simulation
(Wr(t) = 0) and Eq. (S29) gives a constant value of, for exam-
ple, −1 for molecules initialized in the undertwisted case. On
the other hand, when we remove the planes from the simula-
tions the value of Wr changes with time. There is an exchange
of twist and writhe that obeys the White-Fuller-Calugarenau the-
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Fig. S3 Calculation of the Diffusion coefficient from the Fourier Anal-
ysis. Equation S27 predicts for the Fourier modes of the twist local
deformation an exponential decay with time. In the main plot, time evo-
lution of the first modes, k= 1 red, k= 2 yellow, k= 3 green, k= 4 blue,
k= 5 purple, are shown with respect to their initial values and the dashed
lines represent the exponential fit. Since the noise set a limit below which
no information could be extracted, the exponential are fitted in the range
t ∈ [0,Tε] where Tε is the largest values for which |W̃ |k(t)> ε ∀ t < Tε.
Data from all the coefficients and the level of noise ε are shown in the
inset. Using the fit parameters it is possible to estimate the values of the
diffusion constant Dk = ak

N2

4π2k2 .

orem: Lk = Tw(t) +Wr(t), where Lk is constant.
The writhing of the molecule requires global conformational

changes and hence is a slow process compared to the diffusion of
the local twist. Therefore, to be able to track the writhe evolution
(or analogously Tw(t)) we had to speed up our simulations. The
standard way of doing this in molecular dynamics simulations
(see section VI), is to use a high diffusion constant, which in turn
means to use a high inertial time τin.

We ran simulations for a total time of (6× 105τLJ). Initially,
the inertial time was set to τin = 0.03τLJ. After 1× 105τLJ we
increased its value to τin = 1τLJ. A second increased to τin =
10τLJ was applied at time-step 2×105τLJ. The results of the total
twist following this protocol and average over three independent
configurations are shown in Fig. S4 for undertwisted ring DNA
molecules when the temperature is set to 15 K. In Fig. 5 of the
main text we report the same results after rescaling the units of
time by a factor of 1/0.03 = 33.33 during the first increment in
τin and by a factor ten times larger during the second increment.

X Bending modes
As explained in the main text, the dynamics of twist can be di-
vided in two stages. At times t < t∗ the deficit of local twist dif-
fuses across the entire ring, keeping the total twist constant in
the process. In other words, there is no production of writhe. At
t > t∗ the buckling of the molecule might begin. The analysis for
the isotropic TWLC model indicates that there is a critical value
of the linking number excess ∆Lk = Lk−Lk0, beyond which the
planar configuration becomes unstable and the ring buckles and
folds on itself9. According to the linear stability analysis, a char-
acteristic frequency φm for the initial out of plane deformations

Fig. S 4 Time evolution of the total twist for oxDNA1 (green) and
oxDNA2 (cyan). Results are obtained from simulations at T = 15 K.

with mode number m is determined by the following equation

φ2
m = A

ρ0R4
0

(
fm−

2πC∆Lk
A

gm

)
, (S30)

where ρ0 = 3.3× 10−15kg/m, R0 is the radius of the ring with
constant curvature, fm = m4 + 3m2 + 1/2 and gm ≈m3/2. The
most unstable mode (m∗) corresponds to the minimum of the φ2

m

and it can be found as the solution to:

4m3− 3πC∆Lk
A

m2 + 6m= 0. (S31)

Therefore, the theory does not predict any dependence of m∗ on
the total length of the molecule but only on the ratio C

A and ∆Lk.
We expect that this mode will grow faster than the others, and
thus will be the first observed at the onset of the buckling.

We now compare the prediction of the isotropic TWLC model
(Eq. (S30)) with our numerical observations. By doing so, recall
that the number of elastic parameters for our numerical models is
larger than two. We therefore attempt to map the elastic behav-
iors of oxDNAs to that of an isotropic TWLC using their rescaled
elastic constant Ã and C̃. Results are displayed in Fig. S5, where
we plot φ2

m for ∆Lk = 0,1,2 (analogous results are expected for
negative values of ∆Lk, see9) using the ratio C̃/Ã of oxDNA1
(2.04) and oxDNA2 (1.6). From our line of reasoning, one ex-
pects that the smaller the ratio C̃/Ã, the smaller the selected
mode number m∗ at a fixed ∆Lk. We find that, while for oxDNA1
the minimum of φ2

m is located at m∗ ' 4, for oxDNA2 it is smaller
m∗ ' 3. We also note that according to the linear stability analy-
sis (Eq. (S30)) the value of ∆Lk at which φ2

m becomes negative
(indicating the ring instability) depends on the elastic constants
of the system: the smaller the (C/A) ratio the larger the critical
|∆Lk| required to initiate the buckling transition. For the oxDNA
models this transition happens at |∆Lk| ≥ 1.

Since the writhing of the molecule is reflected in Ω1 and Ω2 for
both the oxDNA models, we can track the bending modes (m) by
looking at, for example, the number of minima (or maxima) that
the envelope of Ω2 has at a certain time. This number is shown
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Fig. S5 Reduced frequencies from Eq. (S30) against the mode numberm,
for different levels of supercoiling. At ∆Lk = 1 the value of φ2

m becomes
negative, indicating the instability of the circle. The main figure shows
results for the oxDNA1 model and the inset for oxDNA2. Minimum of
each curve is depicted with a red dot.

at the bottom of supplementary movies S1-S2 and depicted as a
function of time in Fig. S6. We observe that several modes start
emerging on time until one particular mode is selected: m∗ = 4
for oxDNA1 and m∗ = 3 for oxDNA2 as predicted by Eq. (S31)
(see also Fig. S5). However, it is worth mentioning here that this
behavior is only true at early times. We expect that if we wait
long enough until equilibration, the molecule will show the usual
eight-shape (for a ring initialized with |∆Lk| = 1) and therefore
the number of modes at long times will be in general smaller than
m∗.

Fig. S6 Time evolution of the bending mode number for a molecule 312
bp long simulated with the oxDNA1 and oxDNA2 (inset) models. Lines
are a guide for the eye. Here we also observe that the selected mode
numbers at the onset of buckling are m∗ = 4 (oxDNA1) and m∗ = 3
(oxDNA2). See also Supplementary movies.

Since equations (S30) and (S31) were obtained for an isotropic
TWLC without twist-bend coupling, there are some features in
our simulations that the theory is not able to capture. We found
for example that for the oxDNA models there is always an initial
increase of the selected bending mode with the ring size. This is
shown in Fig. 6 for rings with L= 312,624 and 936 bps and two
values of linking deficit ∆Lk =−1,−2.

As discussed in the main text, whenG= 0, the amplitude of the

oscillations in the bending deformations (Ω1 and Ω2) decreases
with the size of the ring. This implies that the anisotropic case
should tend to the isotropic case as L becomes much larger than
the persistence length. Therefore, at L� lb we should recover
the no-dependence of the selected mode m∗ on the ring size. We
believe that is the reason why the results for oxDNA1 with ∆Lk =
−1 show a plateau in Fig. 6 of the main text. We also expect
that when L ∼ lb in the anisotropic case, the larger the linking
deficit the less modes observed for undertwisted rings. The net
effect would be then the slow down of the growth of m∗ with L.
Therefore, we expect that the plateau of m∗ would be reached at
larger lengths as we increase the linking deficit. This is consistent
with the results for oxDNA1 with ∆Lk =−2 in Fig. 6 of the main
text. The exact dependence of m∗ on L and ∆Lk is beyond the
scope of this manuscript.

XI Movies

Movie S1 Time evolution of the local deformations for the system sim-
ulated with the oxDNA2 model after removing the planes and releasing
the twist. Left panel shows Ω1 (red), Ω2 (green) and Ω3 (blue) at the
time indicated at the top of the image. The twist-bend coupling induces
the twist waves. Ω2 and Ω3 are in antiphase as described in Eq. 4. The
local minima of the Ω2 envelope are depicted by black circles. Therefore,
the number of black circles (considering the periodicity of the system) at
a fixed time, is the number (m) of bending modes of the system. This is
shown at the bottom of the image. Right panel shows the configuration
of the system corresponding to the left plot. Four base-pairs located at
position n= 1,78,156 and 234 of the contour length are indicated with
colors: pink, orange, red and black.

Movie S2 Time evolution of the local deformations for the system sim-
ulated with the oxDNA1 model after removing the planes and releasing
the twist. Left panel shows Ω1 (red), Ω2 (green) and Ω3 (blue) at the
time indicated at the top of the image. The local minima of the Ω2 enve-
lope are depicted by black circles. Therefore, the number of black circles
(considering the periodicity of the system) at a fixed time, is the number
(m) of bending modes of the system. This is shown at the bottom of the
image. Right panel shows the configuration of the system corresponding
to the left plot. Four base-pairs located at position n = 1,78,156 and
234 of the contour length are indicated with colors: pink, orange, red
and black.
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