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FIG. S1: Quadrupolar deformation field induced by a cubic particle with a Young contact angle cos θ = 0.6, adsorbed at a
fluid-fluid interface in the “edge up” {110} configuration.
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FIG. S2: Deformation field induced by a single cube of side L adsorbed at a fluid-fluid interface in the “face up” {100}
configuration, for several Young contact angles θ. The particle in this configuration never deforms the interface.

FIG. S3: Interaction energy per particle Ẽ2 ≡ E2/2 − E1 of two cubes with side L and a Young contact angle cos θ = 0.2
adsorbed in the {110} configuration, as a function of the distance D between their centers of mass. In red the case of cubes

with two overlapping rises is depicted, in blue the case of cubes with two overlapping depressions. The energy Ẽ2 is plotted in
units of γΣ, with γ the fluid-fluid surface tension and Σ the surface area of the particle. E1 and E2 are given by Eq. 1 of the
main paper, in the case N = 1 and N = 2, respectively.
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FIG. S4: We discuss here the lattice unit cells and the periodic boundary conditions (PBCs) used to define the several phases
studied in section III of the main paper. Each unit cell is centered in (x = 0, y = 0), and segments represented with the
same colour have the same fluid-fluid interface height profile.

(
a
)

For the hexagonal phase x, we use a hexagonal unit cell
with sides D/(2 cos(30◦)), where D is the center-of-mass distance between two nearest-neighbor particles in the lattice. We
apply the following PBCs to the cell sides: opposite sides of the hexagonal cell have the same fluid-fluid interface height
profile. In the cell there is N = 1 particle in the {111} configuration, and with (x1, y1, α1) given by (0, 0, 0).

(
b
)

For the
honeycomb phase h, we use a rectangular cell with sides 2D cos(30◦) and 3D/2, respectively, where D is the center-of-mass
distance between two nearest-neighbor particles in the lattice. We apply the following PBCs to the cell sides: the half-side
from (−D cos(30◦),−3D/4) to (0,−3D/4) has the same fluid-fluid interface height profile of the half-side from (0, 3D/4) to
(D cos(30◦), 3D/4), the half-side from (0,−3D/4) to (D cos(30◦),−3D/4) has the same fluid-fluid interface height profile of
the half-side from (−D cos(30◦), 3D/4) to (0, 3D/4), and the two remaining opposite sides of the cell have the same fluid-fluid
interface height profile. In the cell there are N = 2 particles in the {111} configuration, and with (xi, yi, αi), for i = 1, 2, given
by (−D cos(30◦)/2, 3D/4, 0) and (D cos(30◦)/2,−3D/4, π).

(
c
)

For the “vertex up” square phase sv, we consider a rectangular
unit cell with sides DS and DL, respectively, where DS and DL are the center-of-mass distances between two nearest neighbor
particles in the dipole-dipole bond direction of the lattice and in the tripole-tripole bond direction of the lattice, respectively.
We apply the following PBCs to the cell sides: opposite sides of the square cell have the same fluid-fluid interface height profile.
In the cell there are N = 2 particles in the {111} configuration, and with (xi, yi, αi) for i = 1, 2, given by (0,−DL/2, 0) and
(0, DL/2, π).

(
d
)

For the chains phase c, we use a rectangular unit cell with sides DS and DL, respectively, where DS is the
center-of-mass distance between two nearest-neighbor particles of the lattice. We instead choose DL ≡ D∗L = 3.0L, with L the
side length of the cubic particles. D∗L corresponds to the smallest distance for which two cubes in the {110} configurations do
not interact. In this way we describe the c phase as a “gas” of chains that do not interact laterally. We apply the following
PBCs to the cell sides: opposite sides of the cell have the same fluid-fluid interface height profile. In the cell there is N = 1
particle in the {110} configuration, and with (x1, y1, α1) given by (0, 0, 0).

(
e
)

For the “edge up” square phase se, we use a
square unit cell with side D, where D is the center-of-mass distance between two nearest-neighbor particles of the lattice. We
apply the following PBCs to the cell sides: opposite sides of the cell have the same fluid-fluid interface height profile. In the cell
there is N = 1 particle in the {110} configuration, and with (x1, y1, α1) given by (0, 0, 0).

(
f
)

For the “face up” square phase
sf, we use a square unit cell with sides D, where D is the center-of-mass distance between two nearest-neighbor particles of
the lattice. We apply the following PBCs to the cell sides: opposite sides of the cell have the same fluid-fluid interface height
profile. In the cell there is N = 1 particle in the {100} configuration, and with (x1, y1, α1) given by (0, 0, 0).
By tuning D for the phases x, h, se, and sf, and DS , DL for the phases sv and c, we regulate the lattice spacing, and therefore
the particle packing fraction η in the lattice. η is given by η = 2/(

√
3D2) for the phase x, by η = 4/(3

√
3D2) for the phase h,

by η = 1/(DSDL) for the phases sv and c, and by η = 1/(D2) for the phases se and sf.
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FIG. S5: Contour plot of the fluid-fluid interface height profile, as obtained by our numerical method, in a unit cell of phase
x, h, sv, c, se and sf (from left to right, respectively) at a fixed Young contact angle cos θ = 0.0. Note that PBCs are applied
to the lattice unit cells, as described in Fig. S4. Each lattice unit cell is shown for a given packing fraction η. The plane z = 0
corresponds to the fluid-fluid interface when no particle is adsorbed. With L we denote the side of the cube.

FIG. S6: Contour plot of the fluid-fluid interface height profile, as obtained by our numerical method, in a unit cell of phase
x, h, sv, c, se and sf (from left to right, respectively) at a fixed Young contact angle cos θ = 0.4. Note that PBCs are applied
to the lattice unit cells, as described in Fig. S4. Each lattice unit cell is shown for a given packing fraction η. The plane z = 0
corresponds to the fluid-fluid interface when no particle is adsorbed. With L we denote the side of the cube.
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FIG. S7: Dimensionless (capillary) interaction energy per unit area η∆E/(γΣ) in the c phase as a function of the particle

packing fraction η, for cos θ = 0.4. ∆E ≡ EN/N −E{110}1 is the (capillary) interaction energy per particle minus the adsorption
energy of a single particle in the {110} configuration, and is expressed in units of γΣ, where γ is the fluid-fluid surface tension
and Σ is the surface area of a particle. With the different colours we indicate η∆E/(γΣ) computed for several values of the
lateral distance DL among the chains (see Fig. S4 and the main manuscript). D∗L = 3L (with L denoting the side of the
cube) corresponds to the smallest distance for which two cubes in the {110} configurations do not interact. We observe that
considering DL > D∗L does not significantly affect the η dependence of η∆E, unless DL is too large.
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FIG. S8: Dimensionless (capillary) interaction energy per unit area η∆E/(γΣ) as a function of the particle packing fraction η,

for cos θ = 0.0. ηξCP indicates the closest-packing of ξ = x, sf. ∆E ≡ EN/N − E{110}1 is the (capillary) interaction energy per
particle minus the adsorption energy of a single particle in the {110} configuration, and is expressed in units of γΣ, where γ
is the fluid-fluid surface tension and Σ is the surface area of a particle. We show results for the phase with chains c (red), the
hexagonal phase x (magenta), the “face up” square phase sf (light-blue), the “edge up” square phase se (yellow), the “vertex
up” square phase sv (blue), and the honeycomb phase h (green). Dotted black lines indicate the common tangent construction.
We see that an extremely dilute disordered fluid phase f coexists with the close-packed x phase for η < ηxCP, while for η > ηxCP

the close-packed x phase coexists with the close-packed sf phase.


