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S1. Basics of Multi-Flavored Colloids 

One way to promote the self-assembly of colloidal particles is through functionalization of their 
surfaces with DNA. DNA-functionalized particles (DFPs) interact with each other through 
complementary Watson–Crick base-pairing interactions and have been used to assemble many 
superlattice structures [1-2].  

Typically, selective binding between DNA molecules tethered on two different particles is 
achieved in one of two ways. First, complementary single-stranded DNA (ssDNA) may be 
grafted on different particles so that they bind through direct hybridization with each other. 
Alternatively, this may be done indirectly by grafting the same ssDNA on both particles, and 
then introducing a complementary linker that can hybridize with the strands on both particles. 
Consequently, the unlike pairs effectively attract each other, whereas non-complementary like 
pairs repel each other due to steric interactions. In both instances, the interactions between like 
and unlike DFPs are not entirely independent of each other [2-4]. 

As a means of achieving this independence, it has recently been suggested that particles can be 
functionalized with a blend of two types of DNA strands with complementary concentrations on 
each particle. These ‘‘multi-flavored’’ particles can exhibit a tunable attraction between the like 
particles while maintaining the interaction between unlike pairs. Indeed, this approach has been 
shown to induce the crystallization of equally sized particles into BCC, HCP, and FCC 
structures. In this instance, the like and unlike interactions may be tuned independently. 
However, each like interaction is not independent of the other because the relative concentrations 
of the two strands are fixed [2, 5-6]. 

S2. Interaction model of Multi-Flavored Colloids 

The self-assembly trajectories are obtained from binary colloidal mixtures representing multi-
flavored DNA functionalized particles (DFPs) for which the attractive interaction between A-
type and B-type particles (i.e., EAA, EBB and EAB) can be adjusted independently Fig. S2.1 shows 
the schematic representation of the multi-flavored DFPs and the pairwise interaction model used 
in molecular dynamics (MD) simulations for obtaining these trajectories. The functional form of 
pair interaction utilized in these simulations is of a Fermi-Jagla type, which has previously been 
successfully used to study the self-assembly process of DFPs both in two and three dimensions 
[2, 28-29]: 
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The first term controls the particle core-core repulsions and the remaining two terms together 
control the soft repulsion and attraction of particle surfaces due to the steric and hybridization 
interaction of DNA sequences. Here, the potential depth of EAA, EBB and EAB can be varied 
independently based on a2 parameter. For interactions between A-type and B-type particles, the 
a2 is set as −1.3219 ε to control a minimum potential depth ε of EAB. a2 is modified for EAA and 
EBB to give EAA/EAB and EBB/EAB ∈ [0,1]. The parameters used in Fermi-Jalge potentials are 
listed as follows: 



ε′ =10 ε σ′ =0.2 σ 
n = 36 s = 0.8 σ 

a1 =11.035 ε a2 ∈	[−1.3219 ε, 0] 
b1 = 404.40 σ−1 b2 = 1044.5 σ−1 
c1 = 1.0174 σ c2 = 1.0306 σ 

Indeed, this self-assembly approach based on tuning EAA, EBB and EAB has been shown to induce 
the crystallization of equally sized DFPs into diverse categories of lattices such as BCC, HCP, 
and FCC structures, which is suitable for the purpose to train the autoencoder.  

 

 

S3. Neighborhood Graph Construction 

S3. Neighborhood Graph Construction 

We employ the methodology described in [7-8] to obtain the neighbor list of topologically 
adjacent particles and subsequent neighborhood graph. The gist of the method is that the convex 
hull formed by the set of neighboring atoms describes the local structure around an atom. The 
convex hull is represented in the form of a neighborhood graph which is then used to classify the 
structure. The convex hull is determined from a Delaunay triangulation of the particle of interest 
and its first coordination shell (which is defined by its 18 nearest neighbors or half the inner shell 
atoms in FCC and HCP lattices). Because this method avoids the concept of bonds between 
particles and instead uses a geometry-based, fixed number of particles to establish the 
neighborhood, it is less sensitive to thermal fluctuations, density gradients, and anisotropy 
mentioned in the main text. Finally, this method includes the central particle in the neighborhood 
graph, which provides greater connectivity between neighbors and therefore greater distinction 
between structures in comparison to CNA and Steinhardt classification methods. Delaunay 
triangulation does yield inconsistent results at solid-vapor interfaces, however, as the method 
tends to connect far-away particles in order to create three-dimensional convex hulls. The 
authors in [7] use outlier detection techniques to filter these spurious results. As will be discussed 
in later sections, our proposed dimensionality reduction and classification techniques naturally 
filter such outliers effectively. 
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Figure S2.1. Schematic representation of multi-flavored DFPs and its effective pair potential model. Each of 
pairwise interaction strengths EAA, EBB, and EAB can be manipulated experimentally by controlling the 
blending ratio of two different types of DNA sequences and it can be adjusted in simulations by changing the 
parameters of implicit Fermi-Jagla potential as illustrated above. 

 

 



 

We evaluate the neighborhood graphs using the graphlet decomposition-based methodology of 
refs. [7-11], which has been successfully implemented for analyzing local structure in a variety 
of colloidal and biological networks. Graphlets are small, connected, non-isomorphic induced 
subgraphs of a larger network that contain some number of nodes, k. The k nodes in each 
graphlet are topologically distinguished by their individual automorphism orbits that account for 
the symmetries among the nodes in said graphlet. Each graphlet thus contains 1 to k-1 distinct 
automorphism orbits. The neighborhood graph is evaluated by computing the frequency of these 
orbits for a given neighborhood. For the purposes of this paper, each node is a particle within the 
neighborhood graph established by the Delaunay triangulation described above. We evaluate the 
neighborhood graph using graphlets with 2-5 nodes, as calculations involving larger graphlets 
quickly become intractable. Graphlets with 2-5 nodes display 73 different automorphism orbits. 
As a result, the local structure of each particle is quantified by a 73 × 1 vector (i.e., the 
neighborhood graph), where each entry in the vector refers to the frequency of an automorphism 
orbit. Following the procedure of [7-8] we additionally weigh the frequencies to account for the 
fact that the appearance of more complex automorphism orbits correlates with the appearance of 
simpler ones. Finally, each neighborhood graph is normalized such that its sum is unity. 

S4. Conceptual Details Behind Autoencoder 

An autoencoder is comprised of an encoder that constructs a low-dimensional representation of 
its input (i.e., the neighborhood graph in this case) and a decoder that reconstructs the input from 
the low-dimensional representation [12-13]. The encoding process is often lossy, meaning that 
part of the information is lost during the encoding process and cannot be recovered during 
decoding. Dimensionality reduction is thus accomplished by finding the encoder/decoder pair 
that keeps the maximum information when encoding and correspondingly has the minimum 
reconstruction error when decoding. Note that only the encoder is used to reduce dimensionality, 
while the decoder is used to find the encoder model that creates the best low-dimensional 
representation of the input data.  

The encoder and decoder are deep feed-forward neural networks (see Fig. S3.1). These neural 
networks consist of multiple fully-connected layers that contain various numbers of nodes. Each 
node multiplies its input by a weight vector and feeds that product into a (generally nonlinear) 
activation function (e.g., hyperbolic tangent, sigmoid, rectified linear unit). Each neural network 
has an input layer, some number of middle or hidden layers, and an output layer. In this work, 
the input layer to the encoder is the neighborhood graph while its output is the low-dimensional 
representation of the neighborhood graph (also called the bottleneck layer). On the other hand, 
the input to the decoder is the bottleneck layer and the output is the reconstructed neighborhood 
graph. 



 

 

 

 

 

 

 

For a given autoencoder architecture (i.e., number of nodes and layers with chosen activation 
functions), the “optimal” encoder/decoder scheme is found through an iterative training process. 
Here, a set of training data is fed to the autoencoder and gradient descent methods are used to 
update the encoder/decoder weights until the reconstruction loss is sufficiently minimized. 
Denote E and D as all possible encoder/decoder combinations (i.e., all possible values of the 
autoencoder weights), x as the neighborhood graph, e(x; λe) as the encoder where λe denotes all 
encoder weights, and d(e(x; λe); λd) as the decoder where λd denotes all decoder weights, and 
J(x,(d(e(x; λe); λd))$ as the decoder’s reconstruction loss. The reconstruction loss is often 
formulated as the mean squared error (MSE) of the original and reconstructed neighborhood 
graphs. The process of finding the optimal encoder/decoder pair is mathematically represented 
below. Note that training the autoencoder can be thought of as a ``self-supervised" learning 
process, as training determines a (nonlinear) function that maps the neural network's inputs (i.e., 
the neighborhood graphs) to themselves (i.e., neighborhood graphs that are reconstructed from 
their low-dimensional representation). 

(𝑒∗, 𝑑∗) = 	 argmin
(',))∈,×.

{J(x, (d(e(x;	λ');	λ))) 

Larger (autoencoder) neural networks (i.e., those with more nodes and/or layers) can find more 
complex relationships between their inputs and outputs, leading to a lower reconstruction loss 

Figure S4.1. Autoencoder architecture. The encoder, e, compresses the neighborhood graph of a given 
particle (a 73 × 1 vector, x) into a low-dimensional representation e(x). The decoder, d, reconstructs the given 
neighborhood graph from the low-dimensional representation. In this work, the encoder and decoder are deep 
neural networks with nonlinear activation functions that learn the encoding/decoding scheme that minimizes 
the reconstruction error of the decoder. This “optimal'' encoder/decoder pairing is determined through an 
iterative training process, where the weights and biases within these neural networks are updated through 
gradient descent methods. Each circle represents a node within the neural network, and the arrows represent 
the connections between these nodes. The autoencoder input layer nodes are green, the autoencoder output 
layer nodes are blue, the hidden layer nodes are grey, and the bottleneck layer nodes are red. 

 



[14]. Larger autoencoders are especially prone to overfitting, however, as the autoencoder is 
solely trained to encode and decode with as little reconstruction loss as possible, no matter how 
the low-dimensional space is organized. This can manifest itself in the low-dimensional space 
lacking continuity (i.e., two close points in the latent space give two completely different 
decoded contents) and lacking completeness (i.e., certain points within the latent space provide 
non-physical responses once decoded). One way to overcome this problem is to introduce 
dropout regularization, which omits certain nodes at random gradient descent iterations in order 
to reduce the size of neuron weights and prevent co-adaptations of the training data [15]. 

Neural networks are generally trained using a 5-fold cross-validation methodology in which 60% 
of the sample data is used to train the model, 20% is used to validate model accuracy (i.e., test 
for model over-fitting), and 20% is used to evaluate model performance [14,16]. This approach 
to model training implicitly assumes that the sections of sample data chosen to train, validate, 
and test the model are fairly representative of the remaining sections (i.e., the data is fairly 
normally or evenly distributed with minimal outliers). However, the natural non-uniformity in 
the distances among neighborhood graphs and the fact the Delaunay triangulation creates 
inconsistent neighbor lists at solid-vapor interfaces render such assumptions invalid. As a result, 
we train the model with all the 4153 unique neighborhood graphs from the sample set. We then 
introduced dropout regularization during training to prevent over-fitting. The objective of 
training the autoencoder is to tune the model weights and biases to achieve the most accurate 
reconstruction of the neighborhood graphs for a given number of nodes and layers. We evaluate 
the performance of our encoder by classifying lattice structures in the low-dimensional space 
(Sections 3.2-3). 

Autoencoder performance greatly depends on certain architectural choices, namely network size 
(i.e., number of nodes in each hidden layer and the bottleneck layer, and the total number of 
hidden layers), activation function choice (e.g., hyperbolic tangent, linear, rectified linear unit), 
batch size (i.e., the number of sample data points used for each weight update), and 
regularization strategy (e.g., norm on the cost function that regulates weight size, dropout 
regularization). Certain architectural choices are fairly standard or are informed by the training 
data. For example, choosing hyperbolic tangent activation functions for the hidden layers is a 
standard choice given the irregularity of the neighborhood graph data [17]. For the same reason, 
we choose a batch size equal to the size of the training data set. Because smaller batch sizes 
update the neural network weights after calculating losses from fewer training samples, 
implementing small batch sizes on data sets with irregular distributions can increase the 
reconstruction error of the autoencoder. Note that smaller batch sizes are often used throughout 
the literature because they generally lead to faster convergence during training datasets with 
Gaussian or nearly Gaussian distributions [26-27]. 

The remaining architectural choices include using Linear activation functions in the 
encoder/decoder output layers (which are standard choices regardless of the sample data 
properties). Dropout regularization is a standard technique to prevent the model from over-fitting 
the training data and MSE is a standard choice of loss function. The optimal network size is 
found by plotting autoencoder training loss as a function of network size and implementing the 



“elbow method” in order to choose the network architecture with the best balance of 
computational cost and performance [18-19]. Note that the number of nodes in the bottleneck 
layer corresponds to the dimension of the low-dimensional space. Finally, the autoencoder was 
implemented using the Python library Keras (a TensorFlow API) [20-21]. 

The elbow plots referred to in the main text (Section 3.1) are below: 

 

 

 

 

 

S5. Conceptual Details Behind Relative Importance Analysis 

One of the main advantages of autoencoders over diffusion maps is that autoencoders provide an 
exact analytical mapping from the high to low-dimensional spaces. This mapping allows us to 
assess the relative importance of each entry in the neighborhood graph via input perturbation and 
stepwise methods [22-26]. Relative importance is measured by the variation in MSE caused by 
perturbing samples in the training data set. Input perturbation methods add Gaussian white noise 
to neighborhood graph entries while stepwise methods replace all graph entry values with their 
mean. Graph entries that show the largest MSE variation are deemed the ``most important''. A 
mathematical representation of relative importance can be found below. Here, ΔEk is the 
variation in MSE caused by the change applied to the kth neighborhood graph entry and the sum 
in the denominator runs over all entries from a neighborhood graph of dimension N × 1. 

𝑅𝐼/ =	
Δ𝐸/

∑ Δ𝐸01
02#

 

Figure. S4.2. Autoencoder architecture optimization. The autoencoder MSE is plotted against the number of 
nodes in the bottleneck layer (i.e., the length of the low-dimensional representation vector) for various 
network sizes. ``Elbows'' in these plots occur between 2 and 4 order parameters, indicating that 3 order 
parameters are likely sufficient to capture the essential information from the neighborhood graphs. The 
autoencoder with 2 hidden layers and 1000 nodes per hidden layer displays the (albeit marginally) lowest 
MSE. 



The relative importance analysis reveals the influence each graph entry has on the quantification 
of local structure and even validates (or invalidates) the need for dimensionality reduction. 
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