Electronic Supporting Information:

Conformational transitions and helical structures of a semiexible dipolar chain in external electric fields.

Yu. D. Gordievskaya^{*,a,b} and E. Yu. Kramarenko^{*,a,b}.

^aFaculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia

^b A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991, Moscow, Russia

*Corresponding author's emails: gordievskaya@polly.phys.msu.ru (YDG) and kram@polly.phys.msu.ru (EYK)

Figure S1. Dependences of R_x (left) and R_{yz} (right) on the chain length N for different E at $\lambda = 10$.

Figure S2. The number density of backbone beads of the dipolar chain along the X-axis under weak and strong electrostatic interactions, $\lambda = 0.1$ and 10, respectively. The coordinate x = 0 is the center mass of the chain.

Figure S3. The number density of backbone beads of the dipolar chain along the X-axis (top) and the mean value of the x-coordinate of *i*-bead relative to the center of mass of the chain (bottom) for various λ at E = 0, 3 and 10.

Figure S4. Dependences of R_x and R_{yz} (left) and shape-factors K_1 and K_2 (right) on λ for chain of different length (N = 100, 200) and fraction of polar groups (f = 0.5, 1) at E = 10.

Figure S5. Contact maps and distributions of dihedral angles along the dipolar chain at $\lambda = 10$ for various E = 0, 3, 6, 8 and 10.

Figure S6. Dependences of R_g on the chain rigidity k at E = 5 and $\lambda = 5$.

Figure S7. K_2/K_1 distibution histogram for the dipolar chains of different rigidity k = 7 - 10 at E = 5 and $\lambda = 5$