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Approximation of mean rotational velocity
First, we consider the dynamics of a single flagellum. In the
simplified form, curvature waves propagating along the contour
length of a flagellum is given by:

κ(s, t) = κ0 +κ1 cos[(ks−ωt +2πα)], (S.1)

where ω = 2π f0 and k = 2π/λ ∼ 2π/L. Tangential angle θ is com-
puted as:

θ(s, t) =
∫ s

0
ds′κ(s′, t) = κ0s+

κ1L
2π

(
sin[2π(s/L− f0t +α)]

− sin[2π(− f0t +α)]
)
+θ(0, t).

(S.2)

For simplicity, we assume flagella is clamped at s = 0 along the
x̂-axis, i.e. θ(0, t) = 0 and x(s = 0, t) = y(s = 0, t) = 0. Assuming
both κ0/k ∼ κ0L/(2π) and κ1/k ∼ κ1L/(2π) to be small, we ap-
proximate cosθ and sinθ by keeping κ0L/(2π) up to the second
order and κ1L/(2π) up to the third order:

cos[θ(s, t)]≈ 1−
κ2

0 s2

2
+

1
24π3 κ1Lcos[π(2α +

s
L
−2 f0t)]sin[

πs
L
]

(
−24κ0π
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s
L
−2 f t)]sin[

πs
L
]

(
3π(−2+κ

2
0 s2)

+κ0κ1Ls
(
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L

]
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,

(S.3)

sin[θ(s, t)]≈ κ0s+
1
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.

(S.4)
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Flagella’s centerline is described by vector r(s, t) =

(
∫ s

0 ds′ cos[θ(s′, t)],
∫ s

0 ds′ sin[θ(s′, t)]) and local velocity and
unit tangent vectors are calculated as U(s, t) = (dx/dt,dy/dt) and
t = (tx, ty) = (cos[θ(s, t)],sin[θ(s, t)]), respectively.

We calculate instantaneous active torque around the grafting
point at (0,0) as:

τa(t) =
∫ L

0
ds r(s, t)× f(s, t), (S.5)

where we f(s, t) is computed in the framework of resistive force
theory:

f(s, t) =−[ζ‖tt+ζ⊥(I− tt)].U =−ζ⊥(I− (1−η)tt).U. (S.6)

Here tt+nn = I is the identity matrix and 1−η = 1− ζ‖/ζ⊥ is a
measure of anisotropy in drag coefficients. Note that if we calcu-
late time-average of force f(s, t), the first term in Eq. S.6 vanishes
and only the second term which is proportional to drag anisotropy
contributes in the mean force. However, the first term does not
vanish when we calculate the mean torque. Thus, τa(t) has a term
proportional to ζ⊥ and a second term proportional to ζ⊥(1−η):

τa(t) =−ζ⊥

∫ L

0
ds [r(s, t)×U(s, t)]

+(1−η)ζ⊥

∫ L

0
ds [(r(s, t)× t(s, t))][t(s, t).U(s, t)].

(S.7)

For a planar flagellar beat in x− y plane, τa(t) is in ẑ direction. In
the limit of λ → L and up to first order in κ0L/(2π) and second
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order in κ1L/(2π), we obtain:

τa ≈
ζ⊥ f0κ1L4

829440π6
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(S.8)

As mentioned previously, even in the absence of drag anisotropy
(η = ζ‖/ζ⊥ = 1), Eq. S.8 has a non-zero value proportional to
ζ⊥. In parallel, we approximate the instantaneous viscous torque
exerted on a flagellum which deforms its shape over time while it
is pinned at one end and rotates at instantaneous angular velocity
Ω = (0,0,Ωz(κ0,κ1, f0,α,η , t)) around the pinning point. At any
instant of time, we consider flagella apparatus as a solid body
with rotational velocity Ωz and calculate the viscous torque as:

τv(κ0,κ1, f0,α,η ,ζ⊥, t) =−
∫ L

0
ds r(s, t)× f(s, t)

= D(κ0,κ1, f0,α,η ,ζ⊥, t)Ωz

(S.9)

where f(s, t) is calculated using Eq. S.6 with instantaneous rigid
body velocity U = Ω× r(s, t) = [−y(s, t)x̂+ x(s, t)ŷ]Ωz and D is the
instantaneous drag coefficient that we aim to calculate. After per-
forming the integration in Eq. S.9, we obtain instantaneous drag

coefficient as:

D≈ ζ⊥L3
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(S.10)

Note that for κ0 = κ1 = 0, Eq. S.10 reduces to −ζ⊥L3/3 which is
the drag coefficient of a rigid cylinder of length L. Furthermore,
in the limit of κ1 = 0, Eq. S.10 simplifies to −ζ⊥L3(20+κ2

0 (−4+
3η)L2)/60 which is the drag coefficient of a bent cylinder with
mean curvature κ0.

Now, we can estimate mean rotational velocity for a single flag-
ellum as:

〈Ωz(κ0,κ1, f0,η)〉= f0
∫ 1/ f0

0
dt

τa(κ0,κ1, f0,α, t)
D(κ0,κ1, f0,α, t)

. (S.11)

Before performing the integration over time, we expand the ra-
tio of τa/D up to first order in κ0L/(2π) and second order in
κ1L/(2π), to obtain:

〈Ωz〉 ≈ − f0
κ0κ2

1 L3

32π6 (2π
2−3)

(
(π2−3)−η(π2−6)

)
(S.12)

As expected, by integrating over one beat cycle, α averages out.
Moreover, consistent with our simulations, 〈Ωz〉 is non-zero for
isotropic drag coefficients ζ‖ = ζ⊥ .

After estimating τa, τv and 〈Ωz〉 for a single flagellum, we can
now calculate instantaneous rotational velocity Ωz of a flagellar
apparatus with two flagella, ignoring the viscous drag of basal
body for simplicity. We balance instantaneous total active torque
with instantaneous total drag torque exerted on flagella appara-
tus to obtain:

Ωz(κ0,κ1,κ
′
0,κ
′
1,α, f0,η , t) =

τa(κ0,κ1, f0,0, t)+ τa(κ
′
0,κ
′
1, f0,α, t)

D(κ0,κ1, f0,0, t)+D(κ ′0,κ
′
1, f0,α, t)

(S.13)

Note that two flagella have different values of intrinsic and dy-
namic curvature and beat with a phase difference of 2πα. Next,
to estimate time-averaged rotational velocity 〈Ωz〉 of flagellar ap-
paratus, we integrate over one beating cycle:

〈Ωz〉= f0
∫ 1/ f0

0
dt

τa(κ0,κ1, f0,0, t)+ τa(κ
′
0,κ
′
1, f0,α, t)

D(κ0,κ1, f0,0, t)+D(κ ′0,κ
′
1, f0,α, t)

(S.14)
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Here, for simplicity we have assumed that both flagella beat at
the same frequency f0. Before doing the integration, we expand
the ratio of total active torque to instantaneous drag coefficients
up to first order in κ0L/(2π) and κ ′0L/(2π) but second order in
κ1L/(2π) and κ ′1L/(2π) to obtain:
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(S.15)

Remarkably, if both flagella have the same magnitude of intrin-
sic curvature (κ0 =−κ ′0) and beat at equal amplitude of dynamic
mode (κ1 =−κ ′1) with phase difference 2πα, then Eq. S.15 will be
reduced to Eq. 15 and in the limit of α = 0, it simplifies to Eq. 16.

Supplemental Movies and Figures

Video 1 Tracked trajectories plotted on top of experimental data
for the first 800 msec.
Video 2 Trajectory of basal body obtained by a Gaussian fit show-
ing a helical path.
Video 3 Video showing superposition of four eigenmodes on top
of tracked flagellum.
Video 4 Swimming trajectory of BA obtained by RFT simulations.
Video 5 Simulations with simplified wave form with equal values
of dynamic and static modes and frequency for both flagella and
no phase difference (see Fig. 7A).
Video 6 Simulations with simplified wave form with equal values
of dynamic and static modes and frequency but phase difference
of π/4 (see Fig. 7B).
Video 7 Simulations with simplified wave form with equal values
of dynamic and static mode but phase difference of π/2 (Fig. 7C).
Video 8 Simulations with simplified wave form with equal phase,
κ0, κ1, but difference in frequency (see Fig. 8A).
Video 9 Simulations with simplified wave form with equal phase
and κ0, but different frequency and κ1 (see Fig. 8B).
Video 10 Simulations with simplified wave form with equal
phase, frequency and κ0, but different κ1 (see Fig. 8C).
Video 11 Same as Video 8 with Vangle = 90◦ (see Fig. 8D).
Video 12 Same as Video 9 with Vangle = 90◦ (see Fig. 8E).
Video 13 Same as Video 10 with Vangle = 90◦ (see Fig. 8F).
Video 14 An intact wall-less C. reinhardtii cell attached via cell
body to the substrate while its two flagella can beat freely.
Video 15 Another exemplary basal apparatus swimming in the
vicinity of the substrate and is used for phase analysis in Fig. S5.
Video 16 A basal apparatus showing tumbling motion in 3D.
Video 17 A basal apparatus switching from 2D motion to 3D.
Video 18 A basal apparatus swimming in 3D with only one beat-
ing flagellum while the second one is not active.
Video 19 A basal apparatus swimming effectively in 2D with only
one beating flagellum while the second one is not active.
Video 20 A basal apparatus swimming in a straight path with only
one beating flagellum while the second one is not active.

Supplemental Figures S1-S5
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Fig.S 1 A) GVF (blue arrows) calculated around flagella apparatus. B) The initial selection of a polygon for the first frame which deforms according to
the GVF calculated around the top flagellum. C) The final tracked shape of top flagella. D) A zoomed-in image showing GVF in higher magnification
in the vicinity of top flagella.

Fig.S 2 Fraction of the total variance σ2
n plotted versus the number of modes n. See section. 2.3 for the definition of σ2

n . Note that already two modes
capture 96% and four modes capture 99% of the total variance.
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Fig.S 3 A) A sample snapshot of an intact Chlamydomonas cell (wall-less strain) which is attached via cell body to the substrate while its two flagella
beat freely. One flagellum is tracked using GVF method. B) Curvature waves propagate from the basal proximal towards the distal tip. C) Power
spectrum of curvature waves show a dominant peak at 40 Hz, and D) Mean shape of the tracked flagellum (filament in cyan color) has averaged
curvature of 0.2 µm−1, comparable to values in Fig. 1 for isolated basal apparatus. See also supplemental Video 14.

Fig.S 4 Curvature waves presented over longer time interval of 0 to 800 msec for A) flagella 1 and B) flagella 2 of the swimming basal apparatus in
Fig. 1.
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Fig.S 5 A-E) Phase analysis of another exemplary swimming basal apparatus showing similar dynamics as Fig. 4. Two flagella beat at different
frequencies of 23 and 27 Hz. See also supplemental Video 15. F) For the case of large frequency mismatch which exceeds the synchronization strength
C, two oscillators fail to synchronize and phase drifts occur, i.e. phase difference monotonically increases or decreases over time with slope ∆ω.

Table 1 Frequencies of N=10 basal apparatus considered in this work.

Basal Apparatus 1 2 3 4 5 6 7 8 9 10
f1(Hz) 21 18.5 21.7 22.7 21.7 24.3 27.7 4.5 6 3.3
f2(Hz) 25 20.4 25.6 26.3 26.3 30.6 20.8 2.9 8.8 5

∆ f (Hz) 4 1.9 3.9 3.6 4.6 6.3 6.9 1.6 2.8 1.7
percentage of the mean 17.4% 9.8% 16.5% 14.7% 19.2% 22.9% 28.4% 43% 37.8% 41%
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