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We have performed rheological experiments of the different samples listed in Table 1. From the 
dynamic amplitude strain sweeps, the curves of shear amplitude strain, , versus stress, , obtained 
in at least three replicates are shown in Fig. S1A. The average results from these raw data are 
depicted in Fig. S1B. 
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Fig. S1. Left. Raw data of strain amplitude measurements (3 to 5 tests) of the samples under study. Right. Averaged 

results of the raw data.

Application of Burger’s model

The Burgers model contains 4 mechanical elements disposed as shown in Fig. S3. In this model, 
Maxwell and Kelvin models are connected in series, and it has been usually applied to biofilms [see 
reference Towler et al. 2003], mainly to creep and recovery experiments.

Fig. S2. Representation of the Burgers model.

This model combines two elastic and two viscous mechanical elements which can be represented 
as springs and dashpots, respectively (Fig. S2). The specific combination of Burgers model leads to a 
constitutive equation of constant coefficients that establishes the relation between the stress and 
the strain as a function of time:

(S1)
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This constitutive equation should apply for the different experiments (dynamic, creep and recovery) 
using the same set of coefficients. We have applied this model using the corresponding equations 
for each experiment:

(S2)

for the strain time evolution in creep experiments,

 (S3)

for the strain time evolution in recovery experiments, for t > tc,

(S4)

(S5)

(S6)

(S7)

for dynamic experiments. A set of coefficients, Gm, Gk, m and k, from the creep experiment is 
obtained for each sample (see Table S1). The fit of Eq. S2 to creep data is observed in Fig. S3.  



4

Fig. S3. Creep compliance, Jc, versus time of the samples studied at different shear stress values, . ( 1000 Pa,  500 
Pa,  250 Pa) CEM-Bac; ( 600 Pa,  300 Pa,  150 Pa) CEM-Zyg; ( 200 Pa,  150 Pa,  75 Pa) ANG-Chlo; ( 60 
Pa,  30 Pa,  15 Pa) CEM-Cya. Burgers model (Eq. S2) is represented by the solid lines. The experimental data are the 
same than in Fig. 6A of the main manuscript.

Table S1. Burgers parameters for the samples studied.

Sample Gm (kPa) m(kPa s) m(s) Gk(kPa ) k(kPa s) k(s)

CEM-Bac 266.3 186,000 698 939.1 15,200 16.2
CEM-Zyg 54.0 44,720 828 121.5 1,690 13.9
ANG-Chlo 47.2 13,800 292 116.5 1.066 9.2
CEM-Cya 34.1 8,600 252 61.8 745.0 12.1

In the case of the Burgers model, two characteristic relaxation times, m and k can be defined 
(m=m/Gm and k=K/Gk). We have obtained that the Burgers model, with two well defined 
relaxation events is not able to describe the complete set of dynamic experiments in these power-
law materials, likely due to its simplicity. This is a clear indication of the broad relaxation spectrum 
related to the specific microstructure composing these power law materials.

For this reason, we decided to apply the fractional Maxwell model, which is capable to describe 
broad relaxation events in complex networks (Jaishankar & McKinley 2013).
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Fig. S4 A) is the representation of the spring-pot mechanical element described by the quasi-property, , and the power-𝑉
law exponent, α. The two extreme cases, viscous (α = 1) and elastic (α = 0), are also depicted. B) is the fractional Maxwell 
model mechanical analogue (two spring-pots disposed in parallel). This model is defined by four material parameters: 
two quasi-properties (  and ) and two power-law exponents (α and β). Both schemes adapted from Jaishankar 𝑉 𝐺
& McKinley (2013).

In this approach a spring-pot unit is described, for which the constitutive equation is given by:

(S8)
𝜎(𝑡) = 𝑉

𝑑𝛼𝛾(𝑡)

𝑑𝑡𝛼

where  is a constant dependent on the material and dα/dtα is the fractional derivative operator. 𝑉

When α  1, the material behaves like a dash-pot (viscous), and when α  0, the material behaves = =

like a spring (elastic). The spring-pot is then a viscoelastic element, and the “quasi-property”  𝑉
characterizes the magnitude of the mechanical response of the material (Fig. S4A). We have 
considered the fractional Maxwell model (FFM), composed of two spring-pot elements in parallel as 
in Fig. S4B. In this case the model displays four parameters, , α, , and β, which should be obtained 𝑉 𝐺
by curve fitting to the experimental results.

The corresponding equation for creep, recovery and dynamic experiments are as follows:

(S9)
𝐽(𝑡) =

𝜎
𝑉

𝑡𝛼

Γ(1 + 𝛼)
+
𝜎
𝐺

𝑡𝛽

Γ(1 + 𝛽)

for the creep compliance response and

(S10)
𝐽(𝑡) =

𝜎[𝑡𝛼 ‒ (𝑡 ‒ 𝑡𝑐)𝛼]
𝑉Γ(1 + 𝛼)

+
𝜎[𝑡𝛽 ‒ (𝑡 ‒ 𝑡𝑐)𝛽]
𝐺Γ(1 + 𝛽)

for the recovery experiment, being tc the creep time.

The characteristic time of the material is defined as:

(S11)
𝜆𝑐= (𝑉𝐺)

1
(𝛼 ‒ 𝛽)
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The corresponding equations for the storage and loss moduli in dynamic measurements are 
obtained as:

𝐺'(𝜔) = 𝐺0
(𝜔𝜆𝑐)𝛼𝑐𝑜𝑠(𝜋𝛼 2) + (𝜔𝜆𝑐)2𝛼 ‒ 𝛽𝑐𝑜𝑠(𝜋𝛽 2)

(𝜔𝜆𝑐)2𝛼 ‒ 𝛽+ 2(𝜔𝜆𝑐)𝛼 ‒ 𝛽𝑐𝑜𝑠[𝜋(𝛼 ‒ 𝛽) 2] + 1
(S12)

(S13)
𝐺''(𝜔) = 𝐺0

(𝜔𝜆𝑐)𝛼𝑠𝑖𝑛(𝜋𝛼 2) + (𝜔𝜆𝑐)2𝛼 ‒ 𝛽𝑠𝑖𝑛(𝜋𝛽 2)
(𝜔𝜆𝑐)2𝛼 ‒ 𝛽+ 2(𝜔𝜆𝑐)𝛼 ‒ 𝛽𝑐𝑜𝑠[𝜋(𝛼 ‒ 𝛽) 2] + 1

being G0 the characteristic modulus of the material:

(S14)𝐺0 = 𝑉𝜆𝑐
‒ 𝛼
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