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1 Simulation details
In our simulation, the aspect ratio of the box Lx : Ly = 2 :

√
3 to en-

sure perfect crystalline order, with periodic boundary conditions
in both directions to minimize the boundary effect of the sys-
tem1,2. The interaction between particle i and its nearest neigh-
bor j is via a finite-range repulsive harmonic potential3:

Vi j(r) = ε(1−
ri j

Ri j
)2

Θ(1−
ri j

Ri j
), (1)

where ri j is the distance between the center of disk i and disk j,
and Ri j is the sum of their radius. The length, energy and mass are
measured in units of the small particle diameter σ ,characteristic
energy scale ε and mass m. Time and temperature have units
τ =

√
ε/mσ2 and ε/kb, where kb is the Boltzmann constant.

All of our calculations are based on molecular dynamics sim-
ulator LAMMPS4. First, the system is relaxed to its minimum
energy by using the FIRE algorithm5 with a timestep dt=0.005τ

(A long enough relaxation time is assured to reach the steady
state.). Simulations proceed at a fixed temperature T = 0.005
with a Nose-Hoover thermostat and a fixed pressure P = 100 with
a Berendsen barostat coupling within an NPT ensemble, while
the NVT ensemble simulated under a fixed volume fraction. In all
cases, data are collected for analysis after the system reaches the
target temperature and pressure, and a timescale ∆t = 2τ units
of time to allow the system to complete a rearrangement, which
means we dump a configuration every 400 timeteps.

2 ML details
2.1 Calculation of the structure functions

To construct an M-dimensional space RM, two families of func-
tions which describe the local structural environments around
each particle are introduced to generate the array of M structure
functions. As in literatures6,7, we describe a structural function of
M =160, including radial density and bond angle information of
the whole system. The first family of structure functions describes
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the radial density properties:

GX (i; µ) = ∑
j∈X

e−(Ri j−µ)2/2σ 2
(2)

where X denotes a species whose density we wish to probe,
µ is varied over the range from 0.3dAA to 5.0dAA in increments
of 0.1dAA, where dAA refers to the large grain diameter, thus a
total of 94 radial density features are obtained for each particle.
The second class of functions includes the bond angle information
between particles within a distance ξ of one another. It is defined
as:

ΨXY (i;ξ ;λ ;ζ ) = ∑
j∈X

∑
k∈Y

e−(R
2
i j+R2

jk+R2
ik)/ξ 2

(1+λ cosθi jk)
ζ (3)

where θi jk is the angle measured between Ri j and Rik. By
varying the parameters ξ , λ and ζ , the angular structure func-
tions carry different information of a particle’s angular neighbor-
hood, without loss of generality, here we take the values shown
by Cubuk et al.6 to yield 66 additional angular structure features
for each particle,where the different parameter combinations are
shown in STable 1 1 . Taken together, we then construct an M-
dimensional space RM with M=160 structure functions, and the
local structure for a center particle i is captured as a point in the
space RM.

2.2 Details of the SVM method

The training set can be written as {(F1,y1),...,(Fn,yn) }, where
Fi={F1

i ,...,FM
i } are the values of the M structure functions that

describe the local neighborhood of particle i. Correspondingly,
a particle i is labeled as yi=1 when it rearrange within the next
time step and conversely yi=-1. We then use the LIBSVM pack-
age to find a hyperplane ω ·F−b = 0 separating rearranging and
non-rearranging particles8,9. Since the data set is not linearly
separable, it is impossible to find a hyperplane that exactly sepa-
rates the two classes. Therefore, We use penalty parameter C and
find the optimal hyperplane equation by minimizing

1
2

ω
T ·ω +C

N

∑
i=1

ξi, (4)
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STable 1 Parameter combinations for angular structure function 6.

ξ ζ λ

1 14.633 1 -1
2 14.633 1 1
3 14.638 2 -1
4 14.638 2 1
5 2.554 1 -1
6 2.554 1 1
7 2.554 2 -1
8 2.554 2 1
9 1.648 1 1
10 1.648 2 1
11 1.204 1 1
12 1.204 2 1
13 1.204 4 1
14 1.204 16 1
15 0.933 1 1
16 0.933 2 1
17 0.933 4 1
18 0.933 16 1
19 0.695 1 1
20 0.695 2 1
21 0.695 4 1
22 0.695 16 1

which is subject to the constraint that yi·(ωT·Fi+b) ≥ 1- χi and
χi≥0, where χi are the slack variables. The parameters are opti-
mized by cross-validation to obtain the best generalization ability.
Hence we need to find the hyperplane that makes the margin be-
tween the training points for class yi=1 and yi=-1 maximized,
and also the possibility of the points on the wrong side of their
margin minimized. Once we have the hyperplane, we calculate
the local structural functions of each particle, which is encoded
as a point in the space RM to be classified as soft or hard8,9.

3 Selection of the system size

SFig 1 The density of states D(ω) for different system size N. Note that
here each curve is emsemble averaged for 5 realizations at η = 1 and
φ = 0.943.

To avoid the possibility of low-frequency artifacts produced by
the boundary conditions, we analyzed the DOS for different sys-
tem size N shown in SFig. 1. Evidently, there is a relatively strong

fluctuation in the DOS curve when the system size is smaller
than 1600, then with N increasing, the curve remains nearly un-
changed, indicating that our result about the vibrational spectrum
would not be affected by the finite size effect if N > 1600. Mean-
while, to satisfy the identification accuracy of the soft particles by
SVM, we thus consider the system size as 10000 particles which
is in agreement with literatures10–13.
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