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I. System description and model calculations22

We set up a one-dimensional model to understand particle distribution relative to the bubble interface and the23

PDMS boundary. Prior to setting up the model, we describe the detailed geometry used in the experiments,24

and define nondimensional variables frequently mentioned in the main text.25

Figure S1: CO2-driven diffusiophoresis in Hele-Shaw cells. (a-c) Schematic of particle (negatively charged) motion near
a CO2 source. (a) Chemiphoretic and (b) electrophoretic contributions to the diffusiophoretic motion are in opposite
directions with electrophoresis dominating, (c) a negatively charged particle migrates away from the CO2 source. (d-e)
Schematics of CO2 bubble experiments. A CO2 bubble of initial radius a0 is injected into a Hele-Shaw cell that is initially
filled with a particle suspension. (f-g) Schematics of fixed boundary experiments. In the Hele-Shaw cell, we put one more
circular spacer (PDMS) to have an inner cell (radius a) in which CO2 can be pressurized. The pressurized CO2 then
dissolves into the particle suspension through the gas permeable PDMS wall. Radius of the outer PDMS wall is b = 11
mm. The height of the Hele-Shaw cell is 500 µm.

CO2-driven diffusiophoresis in an aqueous phase is achieved by dissolution and dissociation of CO2 in water,26

which is described approximately by27

CO2 + H2O
kf−⇀↽−
kr

H+ + HCO−3 . (1)

Due to the large difference in the diffusivity of the two ions, DH+ = 9.31×10−9 m2s−1 and DHCO−3
= 1.19×10−9

28

m2s−1, a large diffusion potential φ2 − φ1 = −kT
e

D+ −D−
D+ +D−

ln
c2

c1
≈ −60 mV (for c2/c1 = 20; c1 = 2.7× 10−6

29

M and c2 = 5.37 × 10−5 M, concentrations of ions in equilibrium with ≈ 20 kPa and ≈ 0.05 kPa CO2)2 is30

created and diffusiophoresis of charged particles is achieved with a dominant electrophoretic contribution (Fig.31

S1(b,c)). The diffusiophoretic velocity up of particles under the ion concentration gradient ∇ci is written as32

up = Γp∇ ln ci, where Γp is the diffusiophoretic mobility of the particles under concentration gradient of a z:z33

electrolyte;434

Γp =
ε

µ

kT

ze

[
βζ − 2kT

ze
ln

(
1− tanh2 zeζ

4kT

)]
. (2)

The formula for the mobility is derived by assuming a thin double layer and local charge neutrality.35

Here ε, µ, k, T , e and ζ are, respectively, dielectric permittivity of the solution, dynamic viscosity of the36

solution, Boltzmann constant, absolute temperature and the zeta potential of the particle. β =
D+ −D−
D+ +D−

is37

the diffusivity difference factor, which determines the strength of the local electric field E = −∇φ induced38

by the difference in diffusivities of the ions. In Fig. S1(a-c), the direction of diffusiophoresis of negatively39

charged particle is described schematically. As the electrophoresis and the chemiphoresis contributions to the40

diffusiophoretic motion are in opposite directions, with the dominant contribution due to electrophoresis, a41

negatively charged particle is expected to migrate away from the source of CO2, following the rapidly diffusing42

H+ ions.43
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We study CO2-driven diffusiophoresis in two different systems; one with a moving boundary and the other44

with a fixed boundary (Fig. S1(d-g)). In the first system, where a CO2 bubble (initial radius a0 ≈ 2.5-345

mm) is introduced in a circular Hele-Shaw cell (Fig. S1(d,e)), we observe a distribution of charged particles46

near the shrinking bubble interface, which moves radially inward as CO2 dissolves into the solution. In the47

second experimental system (Fig. 1(f,g)), CO2 is pressurized at a constant pressure (3 psig) in an inner cell48

(radius a = 3 mm) that is concentrically located with the outer wall of Hele-Shaw cell. As a result, we observe49

and track the particles near the fixed boundary where CO2 dissolves through a PDMS wall into a particle50

suspension.51

In the bubble dissolution system, a CO2 bubble with initial radius a0 shrinks at a typical speed da
dt ≈

D1
a0
≈52

O(0.1-1) µm/s until the gas exchange reaches steady state within ≈ τ = t/a2
0/D1 = 1.1 D1 is the diffusivity of53

CO2 in water. The typical diffusiophoretic velocity up scales as up ≈ Γp

a0
≈ O(0.1-1) µm/s. The relative motion54

of particles and the shrinking interface creates charge dependent particle distribution near the equilibrium55

bubble.56

In both systems, we observe local and macroscopic particle accumulation or exclusion. With one-dimensional57

model, we will calculate particle distribution along the radius of Hele-Shaw cell, and compare the macroscopic58

boundaries of particle accumulation and exclusion with the experimental measurements. The local exclusion59

zone (EZ) growth in the fixed boundary system (HS-BC) is shown in Fig. S2, and the growth of EZ is pro-60

portional to
√
t at early times (Fig. S2(c)). The boundary of EZ in the experiments is defined as the radial61

position where the normalized intensity value is 1.62

Figure S2: Growth of local exclusion zone (EZ) in HS-PC system. (a) Images showing exclusion of polystyrene particles
near the PDMS wall. Scale bars are 100 µm. (b) Normalized intensity plotted versus radial position. We define the
boundary of the local exclusion zone as the radial position where the normalized intensity is 1. (c) Growth of EZ plotted
versus time. Inset: Growth of EZ plotted versus

√
τ showing early dependence on

√
t.

A. Diffusiophoresis of particles near a dissolving CO2 bubble63

Consider a CO2 bubble generated in a Hele-Shaw cell (Fig. S3(a)), dissolving into the aqueous suspension of
particles. We start by writing one dimensional diffusion-reaction equations for CO2 ions and air. Let cm(r, t)
(m = 1, 2) be the mass concentration of CO2 and air, and ci(r, t) be the concentration of ions. Then for CO2,
ions and air, we can write

∂c1
∂t

+
a

r

da

dt

∂c1
∂r

=
D1

r

∂

∂r

(
r
∂c1
∂r

)
− (kfc1 − krc2

i ) (3)

∂ci
∂t

+
a

r

da

dt

∂ci
∂r

=
DA

r

∂

∂r

(
r
∂ci
∂r

)
+ (kfc1 − krc2

i ) (4)

∂c2
∂t

+
a

r

da

dt

∂c2
∂r

=
D2

r

∂

∂r

(
r
∂c2
∂r

)
, (5)

where a(t), D1, DA and D2 are, respectively, the radius of the bubble, CO2, ambipolar and air diffusivities.64

Before solving the equations with appropriate boundary conditions, we would like to evaluate the influence of65

3



CO2-pressurized cellCO2 bubblea b

Figure S3: Schematics for model calculations: (a) CO2-driven diffusiophoresis near a dissolving bubble, and (b) near
a CO2-pressurized cell.

the reaction kinetics on the bubble dynamics by rescaling the equations (3) and (4). Let66

c̄1 =
c1

c1s(0)
, c̄i =

ci
cis(0)

, R =
a

a0
, r̄ =

r

a0
, τ =

t

a2
0/D1

, (6)

where c1s(0) and cis(0) are concentrations of CO2 and ions at the bubble interface at t = 0. Then67

(3)⇒ ∂c̄1

∂τ
+
R

r̄

dR

dτ

∂c̄1

∂r̄
=
∂2c̄1

∂r̄2
+

1

r̄

∂c̄1

∂r̄
− τD

τi

(
kf
krc1s

) 1
2

(c̄1 − c̄2
i ) , (7)

where τD =
a2

0

D1
, τi = (krcis)

−1 and

(
kf
krc1s

) 1
2

=
cis(0)

c1s(0)
.68

(4)⇒ τi
τD

[
∂c̄i
∂τ

+
R

r̄

dR

dτ

∂c̄i
∂r̄
− D̄A

(
∂2c̄i
∂r̄2

+
1

r̄

∂c̄i
∂r̄

)]
= c̄1 − c̄2

i , (8)

where D̄A = DA
D1

.69

Therefore, we obtain for τi � τD and
cis(0)

c1s(0)
� 1,70

c̄1 − c̄2
i = 0 and

∂c̄1

∂τ
+
R

r̄

dR

dτ

∂c̄1

∂r
=
∂2c̄1

∂r̄2
+

1

r̄

∂c̄1

∂r̄
. (9)

In other words, we can decouple the reaction and dissolution of CO2, given that the system parameter satisfies71

the conditions τi � τD and
cis(0)

c1s(0)
� 1. As a result, we can assume local chemical equilibrium everywhere in72

the liquid phase, and the equation kfc1−krc2
i = 0 holds. The ion concentration ci =

√
kfc1/kr can be obtained73

by knowing the concentration c1 of dissolved CO2. Now the CO2 and ion concentrations are decoupled, CO274

concentration can be solved by considering the multicomponent gas dissolution in the system.75

Now let’s consider the equations for multicomponent gas dissolution.76

∂cm
∂t

+
a

r

da

dt

∂cm
∂r

=
Dm

r

∂

∂r

(
r
∂cm
∂r

)
. (10)

Mass conservation at the bubble can be written as

d

dt
(πa2hρm) + 2πah

(
a

r

da

dt
cm

)
r=a

= 2πahDm

(
∂cm
∂r

)
r=a

⇒ ρm
da

dt
+
a

2

dρm
dt

+ cms
da

dt
= Dm

(
∂cm
∂r

)
r=a

, (11)
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where ρm is the density of gases (m = 1, 2) in the bubble. Applying ideal gas law pm = ρmRgmT , where77

pm, Rgm and T are, respectively, the partial pressure of gases in the bubble, specific gas constants, and the78

absolute temperature,79

1

RgmT

[
(1 + kmRgmT )pm

da

dt
+
a

2

dpm
dt

]
= Dm

(
∂cm
∂r

)
r=a

. (12)

Note that the Henry’s law cms = kmpm is used with the Henry’s law constant km (m = 1, 2). At the bubble80

interface,81

p1 + p2 = pa +
γ

a
, and

dp1

dt
+
dp2

dt
= − γ

a2

da

dt
, (13)

where γ is the interfacial tension.82

Equation (12) can be written for each species as below.

1

Rg1T

[
(1 +A)p1

da

dt
+
a

2

dp1

dt

]
= D1

(
∂c1
∂r

)
r=a

(14)

1

Rg2T

[
(1 + αAB)p2

da

dt
+
a

2

dp2

dt

]
= D2

(
∂c2
∂r

)
r=a

, (15)

where α = Rg2/Rg1, A = k1Rg1T and B = k2/k1. Summing up these two equations we obtain83

da

dt
=

D1

(
∂c1
∂r

)
a

+ αD2

(
∂c2
∂r

)
a

1
Rg1T

[
pa + γ

2a +A[p1 + αBp2)
] . (16)

The initial and boundary conditions for cm(r, t), pm(t) and a(t) are (m = 1, 2),

cm(r, 0) = cm∞ (17a)

cm(a, t) = cms(t) (17b)

∂cm
∂r

(b, t) = 0 (17c)

p1(0) = pa +
γ

a0
(17d)

p2(0) = 0 (17e)

a(0) = a0 (17f)

where cm∞ is the concentration of gases in the liquid that is in equilibrium with atmospheric condition. Note84

that we assume the wall r = b to be impermeable to gas. In the experiments, the wall is made of PDMS,85

which is permeable to CO2. However the effect of wall r = b is expected to become significant for times later86

than the typical time scale of experiments (t > τD =
a2

0
D1

). Therefore, the boundary condition ∂c1
∂r

∣∣
r=b

= 0 is87

reasonable.88

By solving equations (10) and (14-16) with appropriate boundary conditions we obtain c1(r, t), and from89

the chemical equilibrium condition we obtain ci(r, t) which is used for calculations of diffusiophoretic velocity.90

The diffusiophoretic velocity of particles in r-direction is91

up = Γp
∂ ln ci
∂r

. (18)

Then the particle distribution in the liquid phase can be obtained by solving92

∂n

∂t
+

1

r

∂

∂r

[
r

(
up +

a

r

da

dt

)
n

]
=
Dp

r

∂

∂r

(
r
∂n

∂r

)
, (19)
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where Dp is the diffusivity of particles. Note that in this model we do not consider the volume of a single
particle and also particle-particle interactions. Boundary conditions for n(r, t) are,

n(r, 0) = n0 (20a)

∂n

∂r

∣∣∣∣
r=b

= 0 . (20b)

The boundary condition at r = a can be written separately for different surface charges of the particles. Since93

we expect the positively charged particles to accumulate at the moving interface,
∂n

∂r

∣∣∣∣
r=a

= 0 for Γp > 0.94

Negatively charged particles always migrate away from the moving interface, which means that we can simply95

assume n(a, t > 0) = 0 for Γp < 0.96

The equations can be nondimensionalized by defining

c̄1 =
c1

c1s(t)
, c̄2 =

c2 − c2∞
c2s(t)− c2∞

, c̄i =
ci

cis(t)
, n̄ =

n

n0
, p̄1 =

p1

pa
, p̄2 =

p2

pa
, Γ =

γ

a0pa
, D̄p =

Dp

D1
,

Γ̄p =
Γp
D1

, Q =
D2

D1
, B =

k2

k1
, A = k1Rg1T , τ =

t

a2
0/D1

, R =
a

a0
, b̄ =

b

a0
, r̄ =

r

a0
. (21)

Note that the definitions for c̄m and c̄i, we now use cms(t) and cis(t) for nondimensionalization. The
nondimensional equations are,

c̄i =
√
c̄1 (22)

∂c̄1

∂τ
+
c̄1

p̄1

∂p̄1

∂τ
+
R

r̄

dR

dτ

∂c̄1

∂r̄
=
∂2c̄1

∂r̄2
+

1

r̄

∂c̄1

∂r̄
(23)

∂c̄2

∂τ
+

c̄2

p̄− 1

dp̄2

dτ
+
R

r̄

dR

dτ

∂c̄2

∂r̄
= Q

(
∂2c̄2

∂r̄2
+

1

r̄

∂c̄2

∂r̄

)
(24)

dR

dτ
=
p̄1

(
∂c̄1
∂r̄

)
R

+ αQB(p̄2 − 1)
(
∂c̄2
∂r̄

)
R

1
A

[
1 + Γ

2R

]
+ (p̄1 + αBp̄2)

(25)

1

A

[
(1 +A)p̄1

dR

dτ
+
R

2

dp̄1

dτ

]
= p̄1

(
∂c̄1

∂r̄

)
R

(26)

1

A

[
(1 + αAB)p̄2

dR

dτ
+
R

2

dp̄2

dτ

]
= αQB(p̄2 − 1)

(
∂c̄2

∂r̄

)
R

(27)

ūp = Γ̄p
∂ ln c̄i
∂r̄

=
Γ̄p
2

∂ ln c̄1

∂r̄
(28)

∂n̄

∂τ
+

1

r̄

∂

∂r̄

[
r̄

(
Γ̄p
2

∂ ln c̄1

∂r̄
+
R

r̄

dR

dτ

)
n̄

]
=
D̄p

r̄

∂

∂r̄

(
r̄
∂n̄

∂r̄

)
. (29)

The nondimensional initial and boundary conditions are,

c̄1(r̄, 0) =
c1∞
c1s(0)

(30a)

c̄1(R, τ) = 1 (30b)

∂c̄1

∂r̄

∣∣∣∣
r̄=b̄

= 0 (30c)

c̄2(r̄, 0) = 0 (30d)

c̄2(R, τ) = 1 (30e)

∂c̄2

∂r̄

∣∣∣∣
r̄=b̄

= 0 (30f)
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p̄1(0) = 1 +
Γ

R(0)
= 1 + Γ (30g)

p̄2(0) = 0 (30h)

R(0) = 1 (30i)

n̄(r̄, 0) = 1 (30j)

∂n̄

∂r̄

∣∣∣∣
r̄=b̄

= 0 (30k)

∂n̄

∂r̄

∣∣∣∣
r̄=R

= 0 for Γ̄p > 0 and n̄(R, τ) = 0 for Γ̄p < 0 . (30l)

97

For calculations in the domain a < r < b or R < r̄ < b̄, we rescale the equations once more with r̃ =
r̄ −R
b̄−R

.

Rescaled equations (22-29) are,

∂c̄1

∂τ
+
c̄1

p̄1

dp̄1

dτ
+

R

(b̄−R)[(b̄−R)r̃ +R]

dR

dτ

∂c̄1

∂r̃

=
1

(b̄−R)2

∂2c̄1

∂r̃2
+

1

(b̄−R)[(b̄−R)r̃ +R]

∂c̄1

∂r̃
(31)

∂c̄2

∂τ
+

c̄2

p̄2 − 1

dp̄2

dτ
+

R

(b̄−R)[(b̄−R)r̃ +R]

dR

dτ

∂c̄2

∂r̃

= Q

[
1

(b̄−R)

∂2c̄2

∂r̃2
+ 1(b̄−R)[(b̄−R)r̃ +R]

∂c̄2

∂r̃

]
(32)

dR

dτ
=
p̄1

(
∂c̄1
∂r̃

)
r̃=0

+ αBQ(p̄2 − 1)
(
∂c̄2
∂r̃

)
r̃=0

(b̄−R)
A

(
1 + Γ

2R

)
+ (b̄−R)(p̄1 + αBp̄2)

(33)

1

A

[
(1 +A)p̄1

dR

dτ
+
R

2

dp1

dτ

]
=

p̄1

b̄−R

(
∂c̄1

∂r̃

)
r̃=0

(34)

1

A

[
(1 + αAB)p̄2

dR

dτ

R

2

dp̄2

dτ

]
=
αQB(p̄2 − 1)

b̄−R

(
∂c̄2

∂r̃

)
r̃=0

(35)

ũp =
Γ̄p

2(b̄−R)

∂ ln c̄1

∂r̃
(36)

∂n

∂τ
+

1

(b̄−R)[(b̄−R)r̃ +R]

∂

∂r̃

[
[(b̄−R)r̃ +R]

(
Γ̄p

2(b̄−R)

d ln c̄1

dr̃
+

R

[(b̄−R)r̃ +R]

dR

dτ

)
n̄

]
=

D̄p

(b̄−R)[(b̄−R)r̃ +R]

∂

∂r̃

[(
r̃ +

R

b̄−R

)
∂n̄

∂r̃

]
. (37)

The rescaled initial and boundary conditions are,

c̄1(r̃, 0) =
c1∞
c1s(0)

(38a)

c̄1(0, τ) = 1 (38b)

∂c̄1

∂r̃
(1, τ) = 0 (38c)

c̄2(r̃, 0) = 0 (38d)

c̄2(0, τ) = 1 (38e)

∂c̄2

∂r̃
(1, τ) = 0 (38f)
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Figure S4: Nondimensional bubble radii R(τ) obtained from experiments and the model are plotted versus nondimen-
sional time τ .

n̄(r̃, 0) = 1 (38g)

∂n̄

∂r̃

∣∣∣∣
r̃=1

= 0 (38h)

∂n̄

∂r̃

∣∣∣∣
r̃=0

= 0 for Γ̄p > 0 and n̄(0, τ) = 0 for Γ̄p < 0 (38i)

p̄1(0) = 1 + Γ (38j)

p̄2(0) = 0 (38k)

R(0) = 1 . (38l)

98

For a bubble with initial radius a0 = 2.75 mm,5–7

A = 0.85 , B = 0.0143 , Γ = 0.00024 , Q = 1.04 , b̄ = 4 , k1 = 1.5× 10−5 kg/m3Pa ,

k2 = 2.15× 10−7 kg/m3Pa , Rg1 = 188.9 J/kg K , Rg2 = 286.9 J/kg K , c2∞ = k2pa ,

Γ̄p = −0.4 , D̄p = 0.00023 . (39)

As a part of comparison between the model and the experiments, we first calculated (model) and measured99

(experiments) the radius change of the bubble R(τ) = a(t)/a0, which is plotted versus nondimensional time100

τ in Fig. S4. Measurements of the bubble radius change in the Hele-Shaw cell are made in three different101

liquid conditions (DI water, a-PS and PS particle suspensions, where pH=6-7) and the average values are102

plotted. There is no fitting parameter used for the model. Agreement between the model calculation and the103

experimental measurements suggest that the one-dimensional model accurately predicts the rate of diffusion104

of gases and ions. It also suggest that we are accurately predicting the position of the moving boundary,105

where the particles are either accumulating or being removed. The particle distribution calculated with the106

corresponding diffusiophoretic velocity is plotted in later section.107

B. Diffusiophoresis of particles near a CO2-permeable PDMS wall (HS-PC)108

Now let’s consider the second system where CO2 dissolves into the liquid through a PDMS wall (Fig. S3(b)).109

The inner cell (r = a = 3 mm) keeps CO2 at a constant pressure. In the experiments, the inner PDMS wall is110

1-mm thick, but in the model calculations we assume that the wall has a negligible thickness. In other words,111

if we set CO2 pressure at p1, CO2 concentration in liquid at r = a is c1s = k1p1, which is a constant. For this112

system, we can write diffusion-reaction equations for CO2 and ions.113
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∂c1
∂t

=
D1

r

∂

∂r

(
r
∂c1
∂r

)
− (kfci − krc2

i ) (40)

∂ci
∂t

=
DA

r

∂

∂r

(
r
∂ci
∂r

)
+ (kfc1 − krc2

i ) . (41)

Then, we can do similar scaling analysis for this model as the previous section, and decouple the CO2 diffusion114

and reaction. Let115

c̄1 =
c1

c1s
, c̄i =

ci
cis

, r̄ =
r

a
, b̄ =

b

a
, τ =

t

a2/D1
, (42)

then116

(40)⇒ ∂c̄1

∂τ
=
∂2c̄1

∂r̄2
+

1

r̄

∂c̄i
∂r̄
− τD

τi

(
kf
krc1s

) 1
2

(c̄1 − c̄2
i ) , (43)

where in this case τD =
a2

D1
, τi = (krcis)

−1 and

(
kr
krc1s

) 1
2

=
cis
c1s

. Also,117

(41)⇒ τi
τD

[
∂c̄i
∂τ
− D̄A

(
∂2c̄i
∂r̄2

+
1

r̄

∂c̄i
∂r̄

)]
= c̄1 − c̄2

i . (44)

Therefore, for τi � τD and
cis
c1s
� 1 we can rewrite the equations (43) and (44) as118

∂c̄1

∂τ
=

1

r̄

∂

∂r̄

(
r̄
∂c̄1

∂r̄

)
and c̄1 − c̄2

i = 0 . (45)

The particle distribution n(r, t) in the region a < r < b can be written as below with up = Γp
∂ ln ci
∂r

,119

∂n

∂t
+

1

r

∂

∂r

(
rΓp

∂ ln ci
∂r

n

)
=
Dp

r

∂

∂r

(
r
∂n

∂r

)
. (46)

Nondimensionalizing the particle equations with120

n̄ =
n

n0
, D̄p =

Dp

D1
, Γ̄p =

Γp
D1

, (47)

we obtain

c̄i =
√
c̄1 (48)

∂c̄1

∂τ
=
∂2c̄1

∂r̄2
+

1

r̄

∂c̄1

∂r̄
(49)

ūp = Γ̄p
∂ ln c̄1

∂r̄
=

Γ̄p
2

∂ ln c̄1

∂r̄
(50)

∂n̄

∂τ
+

1

r̄

∂

∂r̄

[
r̄

(
Γ̄p
2

∂ ln c̄1

∂r̄

)
n̄

]
=
D̄p

r̄

∂

∂r̄

(
r̄
∂n̄

∂r̄

)
. (51)

The nondimensional initial and boundary conditions are,

c̄1(r̄, 0) =
c1∞
c1s

(52a)

c̄1(1, τ) = 1 (52b)

∂c̄1

∂r̄
(b̄, τ) = 0 (52c)

n̄(r̄, 0) = 1 (52d)

∂n̄

∂r̄
(b̄, τ) = 0 (52e)

∂n̄

∂r̄
(1, τ) = 0 for Γ̄p > 0 and − ūpn̄|r̄=1 + D̄p

∂n̄

∂r̄

∣∣∣∣
r̄=1

= 0 for Γ̄p < 0 . (52f)
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Again, the equations can be further rescaled so that the domain of analysis becomes 0 < r̂ =
r̄ − 1

b̄− 1
< 1.

c̄i =
√
c̄1 (53)

∂c̄1

∂τ
=

1

(b̄− 1)2

∂2c̄1

∂r̂2
+

1

[(b̄− 1)r̂ + 1](b̄− 1)

∂c̄1

∂r̂
(54)

∂n̄

∂τ
+

1

[(b̄− 1)r̂ + 1]

1

(b̄− 1)

∂

∂r̂

[
[(b̄− 1)r̂ + 1]

(
Γ̄p
2

1

(b̄− 1)

∂ ln c̄1

∂r̂

)
n̄

]
=

D̄p

[(b̄− 1)r̂ + 1]

1

(b̄− 1)

∂

∂r̂

[
[(b̄− 1)r̂ + 1]

1

(b̄− 1)

∂n̄

∂r̂

]
. (55)

The rescaled initial and boundary conditions are,

c̄1(r̂, 0) =
c1∞
c1s

(56a)

c̄1(0, τ) = 1 (56b)

∂c̄1

∂r̂
(1, τ) = 0 (56c)

n̄(r̂, 0) = 1 (56d)

∂n̄

∂r̂

∣∣∣∣
r̂=0

= 0 for Γ̄p > 0 and − D̄p
∂n̄

∂r̂

∣∣∣∣
r̂=0

+
Γ̄p
2

∂ ln c̄1

∂r̂
n̄

∣∣∣∣
r̂=0

= 0 for Γ̄p < 0 (56e)

∂n̄

∂r̂

∣∣∣∣
r̂=1

= 0 . (56f)

Figure S5: Particle concentration plotted versus dimensionless position for different times. (a,b) For the CO2 bubble
system, n̄(r̄, τ) is plotted versus r̄ for (a) positively charged particles (Γ̄p = 0.5) and (b) negatively charged particles
(Γ̄p = −0.4).(a) Inset: R(τ) plotted versus τ . (c,d) For the fixed boundary system, n̄(r̂, τ) is plotted versus r̂ for (c)
Γ̄p = 0.5 and (d) Γ̄p = −0.4. Positively charged particles show increasing particle concentration toward the CO2 dissolving
interface, whereas the concentration of negatively charged particles decrease near the interface. For all four graphs, we
can obtain the nondimensional distance r̄(n̄ = 1) and r̂(n̄ = 1) where the nondimensional particle concentration is 1.
The comparison for this length scale between model and experiments are shown in Fig. 1 in the main text.
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§§ The initial condition c1∞121

In the experiments, particle suspension was made with deionized (DI) water (Milli-Q). As the DI water is122

brought into atmospheric condition, CO2 in the ambient dissolves into the water. The maximum possible123

concentration of CO2 in the particle suspension is cmax
1∞ = khpco2 = 1.3 × 10−5 M, where pco2 is the partial124

pressure of CO2 in air (≈ 40 Pa). This results in the ion concentration ci∞ = 2.4 × 10−6 M and the pH125

= 5.6. However, the measured pH values of the particle suspension is pH = 6-7, suggesting smaller initial ion126

concentration than the maximum value. Therfore, we choose the initial condition for c1 in all calculations to127

be c1∞ = 0.2cmax
1∞ , which corresponds to the pH = 5.9.128

Equations (31-37) and (54-55) are solved and plotted in Fig. S5-S6. We solve the coupled partial differential129

equations numerically with MATLAB. For the moving boundary case (equations (31-37)), we consider forward130

difference scheme for the entire domain with a spatial step δr̃ = 1/100 and a time step δτ = 10−4. For the131

fixed boundary case (equations (54-55)), we employ an upwinding scheme to avoid numerical instability. Thus,132

we apply forward and backward difference scheme for positively and negatively charged particles, respectively,133

with a spatial step δr̂ = 1/100 and a time step δτ = 10−4.134

In Fig. S5, time evolution of particle distribution is plotted versus radial position for both bubble and the135

fixed boundary systems. In the bubble system (Fig. S5(a,b)), positively charged particles gradually accumulate136

at the bubble interface as the radius decreases (Fig. S5(a)). Negatively charged particles, on the other hand,137

are cleared away from the bubble interface and migrate toward the outer wall r̄ = b̄. It is difficult to directly138

compare the particle distribution between the model and experiments, as the model does not consider all the139

experimental details. However, there is good qualitative agreement between the model and experiments in140

terms of particle directionality. For both moving and fixed boundary systems, and for all charges, we note141

from the graphs in Fig. S5 that the nondimensional positions r̄(n̄ = 1) and r̂(n̄ = 1) can be defined. These142

macroscopic exclusion/accumulation boundaries are also observed in experiments, in the length scales larger143

than the initial radius (r = a0) for bubble system and the inner wall radius r = a for the fixed boundary144

system. Therefore, we choose to compare this value directly between the model and experiments, and it is145

plotted versus time (τ) in Fig. 1 of the main text.146

Figure S6: Effect of diffusiophoretic mobility on the particle distribution. (a,b) Particle distribution at τ = 1 for
different mobilities are plotted versus r̄. (a) Positively charged particles with larger mobility accumulate more near
the bubble interface, whereas (b) negatively charged particles are excluded more for larger mobilities near the bubble
interface. (c,d) Particle distribution at τ = 0.2 for different mobilities are plotted versus r̂ for the fixed boundary system.
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We also tested the effect of particle mobilities Γ̄p on the particle distribution and plotted in Fig. S6. In147

both systems, positively charged particles with larger mobilities accumulated more near the CO2 dissolving148

interface, and negatively charged particles with larger mobilities cleared more of the interfacial region. For the149

negatively charged particle case in the fixed boundary system, both experiments and the model calculations150

suggest existence of particle-free zone within r − a ≈ 200 µm or r̂ ≈ 0.03.151

C. Macroscopic growth of accumulation and exclusion zone152

In the experiments, we observe growing boundaries of a-PS accumulation and PS exclusion in the region153

r > a0 for HS-B (Fig. S7(a), video 2) and r > a for HS-PC (Fig. S7(b), video 3). Time evolution of detected154

boundaries are compared with the model in Fig. 1 in the main text. The boundaries (shown with colored155

arrows in Fig. S7) were detected by sharp change in local gray values.156

Figure S7: Growth of macroscopic accumulation and exclusion zones. (a) Experimental images showing accumulation
and exclusion of particles in HS-B. There is growth of accumulation and exclusion boundaries in the region r > a0. (b)
Images of a-PS and PS experiments in HS-PC, showing growing of accumulation and exclusion boundaries in the region
r > a. Scale bars are 2 mm.

D. Effect of wall diffusioosmosis on the particle velocity: side view of the Hele-Shaw cell157

In order to include more details for predicting the particle behavior in the Hele-Shaw cell, we construct a model158

calculation that considers the side view of the system for HS-PC (Figure S8). We solve for the two-dimensional159

axisymmetric equations that consider CO2 diffusion, diffusiophoresis of particles, and liquid flows induced by160

diffusioosmosis at the top and bottom walls.161

First, we consider the equation of motion to understand the flow velocity in the Hele-Shaw cell. Let ur and162

uz be the flow velocity in r and z directions. With the axisymmetry, the azimuthal component is not included163

in the model calculation (uθ = 0, ∂ur
∂θ = ∂uz

∂θ = 0).164

Figure S8: Schematic of the side view of a Hele-Shaw cell.
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Continuity equation with the incompressible assumption is165

1

r

∂(rur)

∂r
+
∂uz
∂z

= 0 . (57)

For the characteristic velocity scale in the system defined as Uc ≈ Dc/a, Reynolds number Re = ρUca/µ =
ρD1/µ ≈ 0.002 � 1. So we consider the Stokes equation to solve for the flow velocity in the system; ∇p =
µ∇2u.

∂p

∂r
= µ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
∂2ur
∂z2

]
(58)

∂p

∂z
= µ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

]
. (59)

The advection-diffusion equation for CO2 can be written as166

∂c1
∂t

+ ur
∂c1
∂r

+ uz
∂c1
∂z

= D1

[
1

r

∂

∂r

(
r
∂c1
∂r

)
+
∂2c1

∂z2

]
, (60)

with the boundary conditions c1(r, z, 0) = c1∞, c1(a, z, t) = c1a,
∂c1
∂r (b, z, t) = 0 and ∂c1

∂z (r, 0, t) = ∂c1
∂z (r, h, t) =167

0. The boundary condition c1a is the time dependent CO2 concentration that is applied through the PDMS168

membrane. As discussed earlier, the ion concentration ci =
√
kfc1/kr. The diffusiophoretic velocity of particles169

also has two components;170

up = Γp
∂ ln ci
∂r

er + Γp
∂ ln ci
∂z

ez . (61)

The advection-diffusion equation for particles is171

∂n

∂t
+

1

r

∂

∂r

[
r

(
ur + Γp

∂ ln ci
∂r

)
n

]
+

∂

∂z

[(
uz + Γp

∂ ln ci
∂z

)
n

]
= Dp

[
1

r

∂

∂r

(
r
∂n

∂r

)
+
∂2n

∂z2

]
, (62)

and the boundary conditions are, n(r, z, 0) = n0, ∂n
∂r (a, z, t) = 0 for Γp > 0, Γp

∂ ln ci
∂r n −Dp

∂n
∂r = 0 for Γp < 0172

at r = a, ∂n
∂r (b, z, t) = 0, and ∂n

∂z (r, 0, t) = ∂n
∂z (r, h, t) = 0.173

Now we nondimensionalize the equations for the convenience of numerical calculations. For this configura-
tion we choose h as the characteristic length scale (we present the comparison among experiments, model and
the experiments in the main text in dimensional form). Define the nondimensional variables as

¯̄r =
r

h
, z̄ =

z

h
, τ̄ =

t

h2/D1
, ¯̄ur =

ur
D1/h

, ¯̄uz =
uz

D1/h
, ¯̄up =

up
D1/h

, c̄1 =
c1

c1s
, c̄i =

ci
cis

,

n̄ =
n

n0
, ¯̄a =

a

h
, ¯̄b =

b

h
, p̄ =

p

µD1/h2
.

Then,

∂p̄

∂ ¯̄r
=

1
¯̄r

∂

∂ ¯̄r

(
¯̄r
∂ ¯̄ur
∂ ¯̄r

)
−

¯̄ur
¯̄r2

+
∂2 ¯̄ur
∂z̄2

(63)

∂p̄

∂z̄
=

1
¯̄r

∂

∂ ¯̄r

(
¯̄r
∂ ¯̄uz
∂ ¯̄r

)
+
∂2 ¯̄uz
∂z̄2

. (64)

The nondimensional continuity equation is174

∂(¯̄r ¯̄ur)

∂ ¯̄r
+
∂(¯̄r ¯̄uz)

∂z̄
= 0 (65)

Equations for CO2 and ion concentrations are175

∂c̄1

∂τ̄
+ ¯̄ur

∂c̄1

∂z̄
=

1
¯̄r

∂

∂ ¯̄r

(
¯̄r
∂c̄1

∂ ¯̄r

)
+
∂2c̄1

∂z̄2
, c̄i =

√
c̄1 , (66)
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and c̄1(¯̄r, z̄, 0) =
pco2
p1

, c̄1(¯̄a, z̄, τ̄) = c̄1a,
∂c̄1
∂ ¯̄r (¯̄b, z̄, τ̄) = 0, and ∂c̄1

∂z̄ (¯̄r, 0, τ̄) = ∂c̄1
∂z̄ (¯̄r, 1, τ̄) = 0.176

The particle equation is177

∂n̄

∂τ̄
+

1
¯̄r

∂

∂ ¯̄r

[
¯̄r

(
¯̄ur +

Γ̄p
2

∂ ln c̄1

∂ ¯̄r

)
n̄

]
+

∂

∂z̄

[(
¯̄uz +

Γ̄p
2

∂ ln c̄1

∂z̄

)
n̄

]
= D̄p

[
1
¯̄r

∂

∂ ¯̄r

(
¯̄r
∂n̄

∂ ¯̄r

)
+
∂2n̄

∂z̄2

]
. (67)

Boundary conditions are, n̄(¯̄r, z̄, 0) = 1, ∂n̄
∂ ¯̄r (¯̄a, z̄, τ̄) = 0 for Γ̄p > 0,

Γ̄p

2
∂ ln c̄1
∂ ¯̄r n̄− D̄p

∂n̄
∂ ¯̄r = 0 for Γ̄p < 0 at ¯̄r = ¯̄a,178

∂n̄
∂ ¯̄r (¯̄b, z̄, τ̄) = 0, and ∂n̄

∂z̄ (¯̄r, 0, τ̄) = ∂n̄
∂z̄ (¯̄r, 1, τ̄) = 0.179

The equations of motion can be converted to the vorticity equation by (63)× ∂
∂z̄ − (64)× ∂

∂ ¯̄r , since the180

vorticity ω̄ = ∂ ¯̄ur
∂z̄ −

∂ ¯̄uz
∂ ¯̄r . With some algebra, we obtain181

∂2ω̄

∂ ¯̄r2
+

1
¯̄r

∂ω̄

∂ ¯̄r
− ω̄

¯̄r2
+
∂2ω̄

∂z̄2
= 0 (68)

We can define the stream function ψ̄(¯̄r, z̄) so to satisfy the incompressibility assumption (65), and thus182

¯̄ur = −1
¯̄r

∂ψ̄

∂z̄
and ¯̄uz =

1
¯̄r

∂ψ̄

∂ ¯̄r
. (69)

Then the definition of vorticity ω̄ can be written with ψ̄ as183

ω̄ = −1
¯̄r

(
∂2ψ̄

∂z̄2
+
∂2ψ̄

∂ ¯̄r2

)
. (70)

ψ̄ = constant at all walls and we set ψ̄ = 0. Also, on the top and bottom walls, there is diffusioosmotic slip184

generated by the ion concentration gradient. The corresponding boundary condition is, ∂ψ̄∂z̄
∣∣
z̄=0,z̄=1

= Γ̄w ¯̄r
2

∂ ln c̄c
∂ ¯̄r ,185

where Γ̄w is the diffusioosmosis constant for the wall that is equivalent to the diffusiophoretic mobility. We186

chose Γ̄w = −0.3 (Γw ≈ −600 µm2/s) to represent the glass surface in contact with the aqueous phase. The187

discrete boundary conditions for (70) – for numerical calculations – can be computed with a second-order188

Taylor series expansion of the stream function.8189

We further shift the coordinate as ˆ̄r = ¯̄r − ¯̄a so that the origin is at ¯̄a.190

The equations for CO2 and ions are191

∂c̄1

∂τ̄
+ ¯̄ur

∂c̄1

∂ ¯̄r
+ ¯̄uz

∂c̄1

∂z̄
=

1

ˆ̄r + ¯̄a

∂

∂ ˆ̄r

(
(ˆ̄r + ¯̄a)

∂c̄1

∂ ˆ̄r

)
+
∂2c̄1

∂z̄2
, c̄i =

√
c̄1 , (71)

and c̄1(ˆ̄r, z̄, 0) =
pco2
p1

, c̄1(0, z̄, τ̄) = c̄1a,
∂c̄1
∂ ˆ̄r

(`, z̄, τ̄) = 0, and ∂c̄1
∂z̄ (ˆ̄r, 0, τ̄) = ∂c̄1

∂z̄ (ˆ̄r, 1, τ̄) = 0. Note that ` = ¯̄b− ¯̄a.192

The particle equation is193

∂n̄

∂τ̄
+

1

ˆ̄r + ¯̄a

∂

∂ ˆ̄r

[
(ˆ̄r + ¯̄a)

(
¯̄ur +

Γ̄p
2

∂ ln c̄1

∂ ˆ̄r

)
n̄

]
+
∂

∂z̄

[(
¯̄uz +

Γ̄p
2

∂ ln c̄1

∂z̄

)
n̄

]
= D̄p

[
1

ˆ̄r + ¯̄a

∂

∂ ˆ̄r

(
(ˆ̄r + ¯̄a)

∂n̄

∂ ˆ̄r

)
+
∂2n̄

∂z̄2

]
,

(72)

and the boundary conditions are n̄(ˆ̄r, z̄, 0) = 1, ∂n̄
∂ ˆ̄r

(0, z̄, τ̄) = 0 for Γ̄p > 0,
Γ̄p

2
∂ ln c̄1
∂ ˆ̄r

n̄− D̄p
∂n̄
∂ ˆ̄r

= 0 for Γ̄p < 0 at194

ˆ̄r = 0, ∂n̄
∂ ˆ̄r

(`, z̄, τ̄) = 0, and ∂n̄
∂z̄ (ˆ̄r, 0, τ̄) = ∂n̄

∂z̄ (ˆ̄r, 1, τ̄) = 0.195

The vorticity equation is now196

∂2ω̄

∂ ˆ̄r2
+

1

ˆ̄r + ¯̄a

∂ω̄

∂ ˆ̄r
− ω̄

(ˆ̄r + ¯̄a)2
+
∂2ω̄

∂z̄2
= 0 , (73)

and197

ω̄ = − 1

ˆ̄r + ¯̄a

(
∂2ψ̄

∂ ˆ̄r2
+
∂2ψ̄

∂z̄2

)
. (74)

We solve the equations (71-74) numerically with Matlab similar to the one-dimensional problems studied198

above. We consider upwinding scheme for solving c̄1 and n̄ , and thus employ forward and backward differences199

for positive and negative Γ̄p. For ω̄ and ψ̄ we employ central difference scheme to avoid numerical instabilities,200

and the equation (74) is solved iteratively at each time step using the successive over-relaxation (SOR)8 with201

the relaxation factor 0.9.202
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E.1. Concentration of CO2 at r = a203

Figure S9: Schematic of a part of the Hele-Shaw cell.

In order to consider the time-dependent boundary condition for CO2, we consider the one-dimensional204

radial diffusion of CO2 in the PDMS membrane. Let the inner radius of the inner PDMS wall ap, and the205

constant CO2 pressure p1 is applied at r = ap (Figure S9).206

Let cp1, Dp
1 (= 2.4× 10−9 m2/s) and kph (= 6.7× 10−7 mol/Pa·L) the concentration, diffusivity and Henry’s207

law constant of CO2 in PDMS,9,10 respectively. Then for ap < r < a208

∂cp1
∂t

=
Dp

1

r

∂

∂r

(
r
∂cp1
∂r

)
, (75)

and cp1(r, 0) = 0.2kphpco2 and cp1(ap, t) = kphp1.209

Then on the liquid side,210

∂c1
∂t

=
D1

r

∂

∂r

(
r
∂c1
∂r

)
, (76)

and c1(r, 0) = 0.2khpco2 and ∂c1
∂r

∣∣
b

= 0. At r = a, −Dp
1
∂cp1
∂r

∣∣
a

= −D1
∂c1
∂r

∣∣
a

and cpc
kph

= cc
kh

.211

By nondimensionalizing the equations with212

c̄p1 =
cp1
khp1

, c̄1 =
c1

khp1
, D̄p

1 =
Dp

1

D1
, ˜̄r =

r

ap
, ˜̄a =

a

ap
, (77)

and solving the coupled equations numerically with Matlab, we obtain the time-dependent boundary condition213

c1a that is used in the 2D calculations (Figure S10).214

Figure S10: (a) CO2 concentration in PDMS and in the liquid at τ = 0.2. (b) CO2 concentration in the liquid phase
at r = a plotted versus τ .

The radial particle velocity
(
−1

¯̄r
∂ψ̄
∂z̄ +

Γ̄p

2
∂ ln c̄1
∂ ¯̄r

)
at z = h/2 (the velocity is further rescaled for comparison),215

at the radial position between r − a ≈ 200-600 µm is calculated and plotted versus time, and compared with216

the one-dimensional calculation and the experimental measurements. Below we included contour plots for the217

nondimensional stream function and particle concentration at two different times. Due to the diffusioosmotic218

flow along the wall, there is fluid flow created in the Hele-Shaw cell, and the negatively charged particles are219

excluded by the largest radial distance at z = h/2 (due to the symmetry).220
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Figure S11: Contour plots obtained at two different times (τ = 0.01 and 0.1) for (a) the nondimensional stream
function and (b) the nondimensional particle concentration.

E.2. Early time radial diffusiophoresis in the Hele-Shaw cell221

In the main text, the radial particle velocities are compared among one- and two dimensional models, particle222

tracking and PIV. With the constant pressure boundary condition in the one-dimensional model, the largest223

concentration gradient is obtained at τ = 0, and the particle velocity decreases over time. The two-dimensional224

calculation considering time-evolving boundary condition (section I.E.1) shows increase then decrease in the225

radial velocities, which is also observed from the particle tracking. The two-dimensional calculation predicts226

higher particle speed than the measurements, and we interpret that this difference in the magnitude arises227

from the three-dimensional complexity in the flow near the wall. The calculation is not highly resolved to228

include all details of the corner flows that affect the particle motion and velocity measurements.229

We are aware of possible variation of the diffusiophoretic mobility in the system11 as the ion concentration230

and the Debye length change over time. Also, the zeta potential of polystyrene is expected to change under the231

low pH conditions.12 However, the range of ion concentrations (and pH) we use in the experiments is small to232

expect dramatic change in the diffusiophoretic mobility, and the constant mobility is a reasonable assumption233

in our model calculations. Therefore, for the current study we conclude that the difference in the magnitude234

of calculated and measured velocities is due to the three-dimensional complexity in the wall region at early235

times. We are working to understand details of such flow structure and thus do not include in this study.236
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II. Bacterial strains used in the current study237

We present the strain information in Table S1.238

Strains/plasmid Relevant Features Reference

E. coli

S17 λ-pir Wild Type

V. cholerae

C6706str2 El Tor Wild Type 1

JY019 lacZ :Ptac-mKO :lacZ This study

JY238 ∆flaA lacZ :Ptac-mKO :lacZ This study

Plasmid

pKAS32 Suicide vector, AmpR SmS 2

pCN005 pKAS32 lacZ :Ptac-mKO :lacZ 13

pBH050 pKAS32 ∆flaA 14

Table S1: E. coli and V. cholerae strains used in this study.

III. V. cholerae cells in the fixed boundary system (HS-PC)239

We present fluorescent images of V. cholerae wild-type and ∆flaA cells in the HS-PC system. We observe that240

at τ = 1 which corresponds to t ≈ 75 minutes, number of bacterial cells significantly decreased in the vicinity241

of CO2 source (Fig. S12).242

Figure S12: Fluorescent images of V. cholerae (a) wild-type, and (b) ∆flaA in the HS-PC system taken at different
times. Scale bar is 50 µm.

We also present the intensity measurements from the experiments with V. cholerae cells in HS-B and HS-243

PC systems below. Decrease in the fluorescent intensity is clearly observed for both HS-B and HS-PC systems244

in the presence of CO2 dissolution. We note that the background fluorescent signal from the surrounding liquid245

(mKO released by dead cells) has a small contribution to the intensity measurements. This suggests possible246

diffusiophoresis of fluorescent proteins15 in the background liquid, since proteins carry a net surface charge247

away from the isoelectric point (pI). This is discussed in the next section.248
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Figure S13: Intensity measurements for the selected region of interest (100 µm × 100 µm ROI, located ≈ 20 µm away
from the interface). (a) Normalized intensity plotted for different positions and times in HS-B. A significant decrease in
intensity is measured near the dissolving CO2 bubble at τ = 1. I0 is the mean gray value of the ROI in the image at
τ = 0. (b) Normalized intensity near the CO2 source plotted versus τ for HS-PC. Inset: a fluorescent image of the cells
(∆flaA) in HS-PC. Scale bar is 50 µm.

IV. Suspension of bacterial cells in 10 % M9 minimal salt solution249

As described in the Methods section, we suspend bacterial cells in 10 % M9 solution. The hypotonic environ-250

ment excludes the unknown effects of background ions16 and the no nutrient condition suppresses biological251

process of the cell. One can ask cell lysis and survival rate during the experiments. Our experimental time252

was less than 1 hr for V. cholerae, ≈ 30 min. for S. aureus, and maximum 12 hr for P. aeruginosa. Motile253

bacterial cells were found swimming both before and after the experiments.254

After experiments, we collected the sample from the Hele-Shaw cell, and suspended ≈ 0.1 mL of the255

collected liquid in LB. Then the bacterial cells were regrown in LB for 24 hr (with shaking at 37 ◦C)and OD600256

values were measured (Table S2). S. aureus was regrown for 16 hr.257

V. cholerae that was used for 1 hr in HS-PC and collected at t = 1 hr, and P. aeruginosa that was used258

for 1 hr CO2 exposure in HS-PC and collected at t = 12 hr, were regrown in LB for 24 hours with shaking259

at 37 ◦C. Then following the main protocol (Methods), the centrifuged pellet was resuspended in M9 for 2260

hr (at 37 ◦C with shaking) and then in 10 % M9 for another set of diffusiophoresis experiments in HS-PC.261

The regrown cells showed diffusiophoretic motion under CO2 gradient, and we conclude that our experimental262

conditions using dilute medium does not damage or change the relevant cell properties (surface charge, length263

scales, etc.) significantly.264

Next, we discuss the influence of lysed cells in our experiments with fluorescence microscopy. In our V.265

cholerae experiments, most of the fluorescent signal comes from mKO. We note that by using 10 % M9 solution266

Strain Experiment condition OD600 after 24 hr growth in LB

V. cholerae 20 min. exposure to CO2 in HS-PC 1.94

V. cholerae 1 hr exposure to CO2 in HS-PC 1.92

P. aeruginosa 20 min. exposure to CO2 1.98

P. aeruginosa 1 hr exposure to CO2 in HS-PC 1.93

P. aeruginosa 1 hr exposure to CO2 in HS-PC, collected at t = 12 hr 1.94

P. aeruginosa no CO2 exposure, collected at t = 12 hr 1.94

S. aureus 20 min. exposure to CO2 in HS-PC OD600 after 16 hr growth ≈ 2.2

Table S2: Growth test of collected samples after different CO2-driven diffusiophoresis experiments.
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Figure S14: Fixed boundary experiments (HS-PC) for the background (filtered) solution. Normalized intensity near
the CO2 source is plotted versus time for filtered bacterial suspensions. The background fluorescent signal is expected to
come from released mKO protein from lysed cells, and change in the intensity demonstrate combined behavior of mKO
dispersion and diffusiophoresis. Inset: a fluorescent image of filtered solution near the CO2 source (HS-PC). Scale bar is
100 µm.

(pH ≈ 6.5), some cells lyse and release cell materials into the liquid, and mKO is also expected to be released267

into the liquid phase where it emits fluorescent signals. One hour after making the bacterial suspension, we268

filtered the solution first through 200 nm, then a 20 nm filter. The filtered solution is collected for additional269

fixed boundary experiments (HS-PC), and we observe a slight increase in the intensity (Fig. S14) near the270

CO2 source. mKO is O(1-10) nm in size, and has a surface charge that depends on pH, since proteins carry a271

net positive charge below the isoelectric point (pI). To the best of our knowledge, there is no literature that272

measured or calculated the pI of mKO, which open source pI calculators17–19 suggest range between pI =273

6.3-7.1. Therefore, our measurements in Fig. S14 must be combined dispersion and diffusiophoresis of mKO274

molecules in the liquid. We investigate the diffusiophoresis of mKO in.15
275

In order to examine cell lysis and denaturation of the fluorescent protein mKO, we kept the bacterial276

suspension for 24 hours then obtained fluorescent images under identical imaging condition (Fig. S15). We277

observe that the wild-type V. cholerae cells die over time and release fluorescent material into the surrounding278

liquid. The background fluorescence signal shows that mKO does not denature in the surrounding liquid.279

Figure S15: Bacterial suspension of wild-type V. cholerae cells in 10 % M9 solution. (a) 1 hour after making the
experimental solution (OD600 = 0.23). (b) 24 hour after making the solution. The sample was kept under T = 23 ◦C.
(c) 24 hour after making the solution. The sample was kept under T = 37 ◦C. (d) Normalized intensities for (a-c). Scale
bars are 100 µm. The gray values are normalized by that of (a).
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V. Long time behavior of a-PS and PS particles in the bubble system280

To visualize the long term dynamics of a-PS and PS particles after the concentration gradient of CO2 is281

removed, we performed particle experiments with a CO2 bubble in the Hele-Shaw cell (Fig. S16). We observe282

that the particle distribution at t ≈ 1 hr is maintained at t ≈ 16 hr, due to small particle diffusivity Dp.283

Figure S16: Distribution of a-PS and PS particles near CO2 bubbles in the Hele-Shaw cell. Diffusiophoretic accu-
mulation and exclusion of particles near the bubble interface are maintained for t ≥ 16 hours due to small particle
diffusivity.

VI. Long time (t = 12 hr) distribution of P. aeruginosa cells in the fixed284

boundary system285

We present fluorescent images obtained at t = 12 hr for the fixed boundary experiments of P. aeruginosa with286

and without CO2 source. As predicted and visualized in the main text (Fig. 4), after 1 hr of diffusiophoresis287

experiments, cells are removed from the inner PDMS wall (Fig. S17(a-i,c-i)). Without CO2 cells are concen-288

trated near both inner and outer PDMS walls for air source (Fig. S17(a-ii,c-ii)). These cell distributions are289

maintained at t = 12 hr.290

Figure S17: Long time behavior of P. aeruginosa after diffusiophoresis. (a) Images of the Hele-Shaw cells at t = 12 hr
(a-i) after 1 hr CO2-driven diffusiophoresis and (a-ii) without CO2. (b) Schematic showing fluorescent imaging positions.
(c) Fluorescent images obtained (at t = 12 hr) with an identical imaging condition for two systems. Cell density is
visualized by different fluorescent intensities at different regions of the Hele-Shaw cell. Scale bar is 20 µm.
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VII. Diffusiophoresis of motile cells291

As mentioned in the main text, diffusiophoresis of motile cells is different from that of polystyrene particles292

or immotile cells. In our experiments, wild-type V. cholerae and P. aeruginosa are motile cells with single293

flagellum.20–22 At different conditions, swimming speed of V. cholerae and P. aeruginosa are measured in the294

Hele-Shaw cell. We selected meandering trajectories with tracked duration longer than 1 s (Table S3). In 10 %295

M9 solutions, V. cholerae cells are slowed down compared to the reported speed (75.4 ± 9.4 µm/s),20 due to296

low Na+ concentration and room temperature condition (23 ◦C).23,24 Without CO2, the effective diffusivities297

of swimming cells can be estimated as Deff ≈ v2
t tr (≈ 300 µm2/s for V. cholerae and ≈ 500-1000 µm2/s for P.298

aeruginosa calculated with the transit time ≈ 0.56 s.22 These values are either comparable to the estimated299

diffusiophoretic mobility of the cells or larger, and thus simple comparison between Γp and Deff does not inform300

diffusiophoresis. In video 5, we present two movies obtained under fluorescent (10 s interval) and bright field301

(105 ms interval) conditions. It is observed that the flow of cells is a slow-advection with estimated Péclet302

number Pe =
up`cell

Deff
≈ 10−3-10−2, which means that the cells swim with their characteristic velocity, with a303

slow drift due to diffusiophoresis.304

Strain Tracking condition Speed

V. cholerae No CO2 25.6 ± 8.9 µm/s

P. aeruginosa No CO2 50.37 ± 17.14 µm/s

P. aeruginosa t = 20 min. 51.78 ± 11.85 µm/s

P. aeruginosa t = 1 hr (CO2 on for 1 hr) 34.87 ± 9.12 µm/s

P. aeruginosa t = 12 hr (CO2 on for first 1 hr) 31.06 ± 9.43 µm/s

Table S3: Swimming speed measurements for V. cholerae and P. aeruginosa.

We note that the typical swimming speed of P. aeruginosa decrease after 1 hr of CO2 dissolution, and it305

may be due to the pH change affecting flagellar motor.25 Detailed investigation of swimming patterns of V.306

cholerae and P. aeruginosa is not included in the current study.307
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