Supporting Information

Stepwise Organization of Nanoparticle toward Pickering Emulsion

Jingjing Xu, ab Wei Xu, ab Dayin Sun, c Haihua Xiao ab and Zhenzhong Yang*abc

^a State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

 ^c Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Calculation of degree of polymerization (DP).

Molecular weight of VSt is 158, while St is 104. DP of $PVSt_{4.4k}$ is calculated 28. DPs of PS in the samples of $PVSt_{4.4k}$ -*b*- $PS_{29.7k}$, $PVSt_{4.4k}$ -*b*- $PS_{7.7k}$ and $PVSt_{4.4k}$ -*b*- $PS_{5.6k}$ are calculated 286, 74 and 54, respectively.

Calculation of grafting number of the polymer chain on PVSt-*b*-PS@Fe₃O₄ composite NPs.

The weight ratio of polymer to the amine-capped Fe₃O₄ NP in one composite NP is

$$\frac{V_0 - V}{V\overline{M}n} = kN$$
given as: $\overline{V\overline{M}n}$

where V_0 : the saturation magnetization of the amine-capped Fe₃O₄ NP; *V*: the saturation magnetization of the composite NP; M_n : the number average molecular weight of the grafting polymer chain; *k*: a constant; *N*: grafting number.

Based on the number average molecular weight of the grafting polymer (Figure 1a) and VSM results (Figure 2d and Figure S2), the grafting number ratio is calculated as

Figure S1. TEM images of (a) the oleic acid capped Fe_3O_4 NP and (b) the amine-capped Fe_3O_4 NP; (c) FT-IR spectra of (1) the oleic acid capped Fe_3O_4 NP and (2) the amine-capped Fe_3O_4 NP; (d) Zeta potential of the amine-capped Fe_3O_4 NP in water; (e) DLS traces of (1) the oleic acid capped Fe_3O_4 NP in toluene and (2) the amine-capped Fe_3O_4 NP in water; (f) XRD patterns of (1) the oleic acid capped Fe_3O_4 NP and (2) the amine-capped Fe_3O_4 NP.

Figure S2. VSM curve of the amine-capped Fe₃O₄ NP.

Figure S3. FT-IR spectra of (1) the amine-capped Fe_3O_4 NP and (2) the PVSt-*b*-PS@Fe_3O_4 composite NP.

Figure S4. DLS traces of the three composite NPs after grafting varied polymers: (1) $PVSt_{4.4k}$ -*b*-PS_{29.7k}, (2) $PVSt_{4.4k}$ -*b*-PS_{7.7k} and (3) $PVSt_{4.4k}$ -*b*-PS_{5.6k}. The measurement was performed in dimethyl sulfoxide (DMSO).

Figure S5. Magnified TEM images of the three representative PVSt-*b*-PS@Fe₃O₄ composite NPs after conjugating with different polymers: (a) $PVSt_{4.4k}$ -*b*-PS_{29.7k}, (b) $PVSt_{4.4k}$ -*b*-PS_{7.7k}, and (c) $PVSt_{4.4k}$ -*b*-PS_{5.6k}, the samples were stained with RuO₄.

Figure S6. ¹H-NMR (DMSO-d6, 400MHz) spectra of the serum after removal of the $PVSt_{4.4k}$ -*b*- $PS_{5.6k}$ @Fe₃O₄ composite NP from the dispersion in DMF (a) before and (b) after click reaction with mPEG-SH (10 mg). N, N-dimethylacetamide (DMA) was

added as the internal standard to monitor the conversion of mPEG-SH.

The intense characteristic peak at δ =1.96 ppm is assigned to the methyl proton of DMA as the internal standard.

The intense characteristic peak at δ = 3.51 ppm is assigned to the methylene proton of mPEG-SH.

For one composite NP of $PVSt_{4.4k}$ -*b*- $PS_{5.6k}$ @Fe₃O₄, the masses of Fe₃O₄ NP and PVSt segment are estimated as:

$$m_{\text{Fe}_3\text{O}_4} = \rho V = \rho 4/3\pi r^3 = 5.18 \times 4/3 \times 3.14 \times (5 \times 10^{-7})^3 = 2.71 \times 10^{-18} \text{ g}.$$

 $m_{PS-b-PVSt} = NM_n/N_A = 10 \times 10^3/(6.02 * 10^{23}) = 1.66 \times 10^{-19} \text{ g}.$

 $m_{PVSt} = NM_{nPVSt}/N_A = 10 \times 4.4 \times 10^3/(6.02 * 10^{23}) = 7.31 \times 10^{-20} \text{ g}$

The PVSt mass fraction in respect to the composite NP is calculated: $7.31 \times 10^{-20}/(2.71 \times 10^{-18} + 1.66 \times 10^{-19}) = 2.54\%$.

Molar amount of VSt in 30 mg of the $PVSt_{4.4k}$ -b- $PS_{5.6k}$ - Fe_3O_4 composite NP is calculated: $30 \times 2.54\%/158 = 4.82 \times 10^{-3}$ mmol.

NMR peak at 3.51ppm is decreased by 14.5% after the click reaction, equal to the conversion of mPEG-SH. Molar amount of the reacted mPEG-SH is calculated:

 $10 \times 14.5\% / 1000 = 1.45 \times 10^{-3}$ mmol.

The grafting ratio of mPEG-SH is measured $1.45 \times 10^{-3}/4.82 \times 10^{-3} = 30.1\%$.

Number of the grafted mPEG-SH side chain onto one $PVSt_{4.4k}$ -*b*-PS_{5.6k} chain is calculated: $4400/158 \times 30.1\% \approx 8$.

Figure S7. ¹H-NMR (DMSO-d6, 400MHz) spectra of the serum after removal of the $PVSt_{4.4k}$ -*b*- $PS_{5.6k}$ @Fe₃O₄ composite NP from the dispersion in DMF (a) before and (b) after click reaction with mPEG-SH (4 mg). N, N-dimethylacetamide (DMA) was added as the internal standard to monitor the conversion of mPEG-SH.

NMR peak at 3.51ppm is decreased by 17% after the click reaction, equal to the conversion of mPEG-SH. Molar amount of the reacted mPEG-SH is calculated: $4 \times 17\%/1000 = 0.68 \times 10^{-3}$ mmol.

The grafting ratio of mPEG-SH is measured $0.68 \times 10^{-3}/4.82 \times 10^{-3} = 14.1\%$.

Number of the grafted mPEG-SH side chain onto one $PVSt_{4.4k}$ -*b*-PS_{5.6k} chain is calculated: $4400/158 \times 14.1\% \approx 4$.

Figure S8. DLS trace of the dispersion as shown in Figure 3a1.

Figure S9. DLS trace of the oil/water mixture containing 1.5μ L of cyclohexane.

Figure S10. DLS trace of the dispersion as shown in Figure 3a2.

Figure S11. DLS trace of the oil/water mixture containing 12.0 µL of cyclohexane.

Figure S12. DLS trace of the bottom dispersion as shown in Figure 3a3.

Figure S13. Zeta potential values of (1) the $(PVSt_{4.4k}-g-PEG_8)-b-PS_{5.6k}@Fe_3O_4$ composite NP dispersion in water; (2-4) the dispersions as shown in Figures 3a1, 3a2 and 3a4, respectively.

Figure S14. Magnetic collection of the emulsion stabilized with SDS: (a) the emulsion and (b) after feeding the composite NP; (c) magnetic collection of the emulsion; (d) CLSM image of the emulsion (a); (e) CLSM image of the emulsion (b).