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1 Supplemental videos
Here are the captions of the supplemental videos.

Supplemental video S1: transition from the twisted configuration to the escaped radial configuration in a capillary with square
cross section filled with CCN-47.

Supplemental video S2: images taken at different planes showing two defect lines crossing each other in a square capillary filled
with CCN-47.

Supplemental video S3: images taken at different planes showing two defect lines not crossing each other in a square capillary
filled with CCN-47.

2 Supplemental information
2.1 Simulation description and parameters
For the numerical modeling we use the standard Landau-de Gennes Q-tensor approach with a finite difference scheme implemented on
a regular cubic mesh. The free energy is the sum of the contribution of the Landau energy, the bulk elastic energy and the anchoring
energy and it is calculated in the whole volume bounded by the capillary boundary surface. The defects are identified as the region
where the order parameter S, the largest eigenvalue of the tensor, is significantly lower than the bulk order parameter S0. In this system,
the mesh size corresponds to the correlation length of the liquid crystals, roughly 4.5nm (Simulation Unit, SU). With this mesh size, the
maximum total simulation size in this work corresponds to capillaries with radius around 112.5 nm and length around 675 nm.

The boundary conditions, the elastic constants and the anchoring constant are given as input. In the simulations presented in the
paper, we use the two-constants approximation, where the splay and bend constant are equal K1=K3 = 10−11N and the twist constant is
lower and defined from the ratio K2/K3. However, here in SI we explore also other combinations of elastic constants, in particular the
case when K1 = K2 < K3. Once again K2/K3 is the relevant parameter. The capillary walls have homeotropic anchoring with strength
corresponding to Wh = 10−2 J m−2 (strong anchoring). There are no periodic boundary conditions at the end of the capillaries, but
instead the ends of the capillary have very weak planar anchoring Wp = 10−10 J m−2, justified by the fact that the liquid crystal has an
almost planar alignment in the cross section of the capillary. In the paper and in the supplemental materials, we refer to this value as
weak degenerate planar anchoring, unless otherwise specified. We have verified that changing this anchoring by one order of magnitude
(smaller or larger) does not affect the final configuration.

As parameter constants of the Landau energy A, B and C we used the typical values for 5CB, A =−0.172∗106 J / m3, B =−2.12∗106

J/m3, C =+1.73∗106 J/m3, which give a scalar order parameter around S0=0.531.
With three elastic constants, the total free energy density f is calculated as:
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where, in the uniaxial limit, the Q tensor has components Qab = 3
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3 δab), where n is the nematic director and S the scalar
order parameter. The elastic constants L1, L2, L3 are related to the elastic constants K1, K2 and K3 by L1 = 2/(27S2
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With the two elastic constants approximation, the total free energy density f is calculated as:
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The two elastic constants L1 and L2 are related to the elastic constants K1, K2 and K3 by K1 = K3 =
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Fig. 1 Chemical structure of the liquid crystals 8CB (a) and CCN-47 (b).

Fig. 2 Example of twisted configuration observed in a glass capillary with square cross section, with side 50µm, treated for homeotropic anchoring
with octadecyl-trichlorosilane and filled with the common liquid crystal 8CB. The configuration is observed at the smectic-nematic phase transition; it
is transient and unstable and eventually it is replaced by an escaped radial configuration. (a) Capillary at T=33o C viewed under crossed polarizers,
whose direction is indicated by the arrows; (b) the same capillary at T=33.4o C; (c) capillary being held at the same temperature for about 5 minutes. It
is possible to see how the escaped radial configuration takes over the twisted lines.
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Fig. 3 Simulation of defects in capillaries with circular cross section with varying radii R and elastic anisotropy, for K1 = K3=10−11N . The boundaries
have strong homeotropic anchoring along the capillary walls and weak degenerate planar anchoring at the two ends (as explained in SI 2.1). The
simulation unit is SU=4.5nm. In the insets we show the cross section (perpendicular to the capillary axis) for some configurations. For small elastic
anisotropy K2/K3=0.75 the simulations show the Planar Polar achiral configuration. Twist arises for K2/K3 ≤0.5 for all radii tested. At low elastic
anisotropy the defect helicity is smooth, but it progressively becomes more irregular as the anisotropy increases, at all radii. In the simulation, the
length of the capillary varies, even though this does not affect the results. The lengths are 50, 100 and 150 SU respectively for the capillaries with
radius 5, 15 and 25 SU.
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Fig. 4 Simulations of capillaries with circular cross section, radius 275nm (25 SU) and length 150 SU, with varying anchoring and elastic anisotropy,
where K1 = K3 > K2. Defects are highlighted in blue and the small glyphs indicate the nematic director. The anchoring at the two ends is very weak
planar anchoring as specified in the SI section 2.1. Here, we vary the elastic anisotropy K2/K3 keeping K3=10−11N, and the anchoring constant. The
parameter wh describes the ratio between the anchoring constant used in the simulation and the strong homeotropic anchoring constant Wh = 10−2

J m−2. It is possible to see that for wh ≥ 0.05 the defects’ helicity remains roughly the same and for lower wh the system adopts a uniform planar
configuration without defects, allowed by the weak anchoring.
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Fig. 5 Simulation of defects in capillaries with circular cross section with varying radii R (from 45 to 90nm) and elastic anisotropy, for K1 = K2 < K3. The
length of the capillary is 150 SU. The boundaries have strong homeotropic anchoring along the capillary walls and weak degenerate planar anchoring
at the two ends, the elastic constants are for the three rows K2 = 2.4 ∗ 10−12N, K2 = 1.6 ∗ 10−12N and K2 = 10−12N respectively. The simulation unit is
SU=4.5nm. The defects are highlighted in blue and the director field is shown by the black glyphs. For small elastic anisotropy K3/K2=2.1 the largest
capillary shows the Planar Polar achiral configuration, while for smaller radii there is an onset of twist. Twist is evident for K2/K3=0.26 for all radii tested.
At low elastic anisotropy twist is smooth, but it progressively becomes more irregular as the anisotropy increases, at all radii.
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Fig. 6 Simulations of capillaries with circular cross section, diameter 135nm (30 SU) and length 100 SU, with varying anchoring and with
K1=K2=2*10−12N and K3/K2=4. Defects are highlighted in black and the small glyphs indicate the nematic director. The anchoring at the two ends of
the capillary is very weak planar anchoring as specified in the SI section 2.1. Here, we vary the anchoring constant. The parameter wh describes the
ratio between the anchoring constant used in the simulation and the strong homeotropic anchoring constant Wh = 10−2 J m−2. It is possible to see that
these simulations are even more robust than the ones shown in the previous figure, and that for wh ≥ 0.025 the defects’ helicity remains roughly the
same. For lower wh the system the defect lines become irregular and the system tends to be uniform planar in the plane perpendicular to the capillary
axis.
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Fig. 7 Handedness of the twist around disclination lines. The simulations are the same as used in Fig. 2c (panel (a)) and 2e (panel (b)) in the main
text. Here the twist is shown at various points along the lines, showing that the kinks are points of handedness inversion.

Fig. 8 Simulations of the twisted escape radial (TER) configurations, obtained as a metastable state by using an escaped radial configuration as initial
state and introducing an elastic anisotropy with K1 = K3 = 5K2. As in the other simulations in the paper, the system does not have periodic boundary
conditions and the LC has weak planar anchoring on the two ends of the capillary. (a-b) Side view and view along the capillary diameter of the TER
configuration. This defect-free state was obtained as a metastable configuration by increasing the value of the phase energy in the simulations by 2.6
times, which was done by modifying the values of A in the Landau energy, increasing it by five times. (c) Configuration obtained with the same phase
energy relaxing the previous configuration and adding noise to escape the metastable state. The dark lines represent the twisted defects. The energy
difference between the two configurations is 1100kT for a cylindrical capillary with 112.5 nm radius (25 SU) and 1125 nm length (2200 kT/µm3) but it
decreases to 140 kT/µm3 for a capillary with 67.5 nm radius (15 SU).
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Fig. 9 Evidence of the lozenge pattern, as presented in figure 1 of the main text, in a glass capillary with circular cross section and 50 µm diameter.
The configuration was observed at the smectic-nematic phase transition; however, it is extremely unstable and difficult to observe in capillaries with
circular cross section. (a) Lozenge pattern forming in a capillary with round cross section treated with octadecyl-trichlorosilane and filled with 8CB. (b)
Lozenge pattern forming in a capillary with round cross section filled with a mixture of CCN-47 and 0.1% of DDAB. The directions of the polarizers are
indicated by the arrows.

Fig. 10 Simulation of defects in capillaries with square cross section, with elastic constants K1 = K3 > K2. The boundary conditions in these simulations
are capillaries with square cross section and rounded corners. The length of the capillary is kept constant at 150 SU but the side of the square cross
section L is varied from 20 SU (line (a)), to 30 SU (line (b)) and 50 SU (line (c)), corresponding to 90 nm-225 nm. The capillaries have radii of curvature
of the corners Rc varying from 10 SU (rounded corners) to 4 SU (sharper corner). The boundaries have strong homeotropic anchoring along the
capillary walls and weak planar anchoring at the two ends, the elastic constants are K1 = K3=10−11N and K2 = 0.25K3. In every simulation, two different
side views of the capillary are shown for clarity. In all cases, the defects form a smooth twist, or distorted twist configuration for larger radii of curvature,
while they adopt the zig-zag configuration for the smallest radius of curvature. However, it is clear that in thinner capillaries the crossings of the capillary
are more closely spaced.
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Fig. 11 Simulation of defects in capillaries with square cross section with elastic constants K1 = K2 < K3. The boundary conditions in these simulations
are capillaries with square cross section and rounded corners as in the previous figure. The length of the capillary is kept constant at 150 SU but
the side of the square cross section L is varied from 20 SU (line (a)), to 30 SU (line (b)) and 40 SU (line (c)), corresponding to 90 nm-180 nm. The
capillaries have radii of curvature of the corners Rc varying from 4 SU (sharp corners) to 10 SU (rounder corners). The boundaries have strong
homeotropic anchoring along the capillary walls and weak random planar anchoring at the two ends, the elastic constants are K1 = K2=2*10−12 N and
K3 = 4K2. In every simulation, the side view and the top view of the capillary are shown for clarity. In all cases, the regular twist is more difficult in the
capillaries with sharper corners, which favor instead the zig-zag configuration where defect lines switch edges, as can be seen from the cross section.
(d) Defect lines in a square capillary with smaller (red defects) and larger (yellow defects) value of K1, while keeping K2 and K3 fixed. In the red curve,
K1 is reduced by a factor of 5. It is possible to see how decreasing K1 leads to defect lines moving further away from the edges to the center of the
capillary.
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Fig. 12 Observation of twist and wedge characteristic of defect lines in capillaries with round and square cross section with elastic constants K1 = K2 <

K3. (a) Twist-wedge winding characteristic of the disclinations shown in Supplemental Figure 5, with K2/K3 = 0.26 and radius R=20 SU. (b) Twist-wedge
winding characteristic of the disclinations shown in Supplemental Figure 11 with side equal to 40 SU and curvature radius of the edges equal to 4 SU.
Insets show zoomed-in views of the director on one plane, with the plane colored by the local density of twist distortions.
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