## **Electronic Supplementary Information (ESI)**

# Lipase sensing by naphthalene diimide based fluorescent organic nanoparticles: a solvent induced manifestation of self-assembly

Debayan Chakraborty, Deblina Sarkar, Anup Kumar Ghosh and Prasanta Kumar Das\*

School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata – 700032, India

\*To whom correspondence should be addressed. E-mail: bcpkd@iacs.res.in



Scheme S1. Synthetic scheme for NDI-based amphiphiles.

#### **Characterization of NDI-1**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$ /ppm = 8.75-8.76 (m, 4H, NDI core), 7.40-7.47 (m, 10H, C<sub>6</sub><u>H</u><sub>5</sub>-), 5.06 (s, 4H, -O-C<u>H</u><sub>2</sub>-C<sub>6</sub>H<sub>5</sub>), 4.28 (s, 4H, NDI-C<u>H</u><sub>2</sub>-C(=O)-O-).

<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): 168.27, 162.78, 141.06, 134.83, 133.15, 128.25, 127.74, 127. 19, 121.50, 65.47, 41.54.

MALDI-TOF MS: m/z: 585.53 [M+Na]<sup>+</sup> (calculated); found = 585.78 [M+Na]<sup>+</sup>.

FTIR:  $\delta_{(C=0, \text{ imide})} = 1782 \text{ cm}^{-1}$ ,  $v_{(C=0, \text{ imide})} = 1729 \text{ cm}^{-1}$ ,  $\delta_{(C-H)} = 2856 \text{ cm}^{-1}$ .

#### **Characterization of NDI-2**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$ /ppm = 8.75-8.76 (m, 4H, NDI core), 7.30-7.35 (m, 10H, C<sub>6</sub>H<sub>5</sub>-), 5.11 (s, 4H, -O-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>), 3.18-3.29 (m, 4H, -CH<sub>2</sub>-CH<sub>2</sub>-NDI-), 2.38-2.40 (m, 4H, -CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O-), 1.73-1.79 (m, 8H, NDI-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O-), 1.35-1.38 (m, 4H, NDI-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O-). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): 173.48, 162.97, 136.24, 131.11, 128.70, 128. 32, 128.30,

126.88, 126.80, 66.30, 40.82, 34.27, 27.86, 26.69, 24.73.

MALDI-TOF MS: m/z: 674.74 [M+Na]<sup>+</sup> (calculated); found = 697.98 [M+Na]<sup>+</sup>.

FTIR:  $\delta_{(C=0, \text{ imide})} = 1785 \text{ cm}^{-1}$ ,  $v_{(C=0, \text{ imide})} = 1724 \text{ cm}^{-1}$ ,  $\delta_{(C-H)} = 2854 \text{ cm}^{-1}$ .

#### **Characterization of NDI-3**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$ /ppm = 8.75-8.76 (m, 4H, NDI core), 7.30-7.35 (m, 10H, C<sub>6</sub><u>H</u><sub>5</sub>-), 5.16 (s, 4H, -O-C<u>H</u><sub>2</sub>-C<sub>6</sub>H<sub>5</sub>), 3.30-3.40 (m, 4H, -CH<sub>2</sub>-C<u>H</u><sub>2</sub>-NDI-), 2.41-2.44 (m, 4H, -CH<sub>2</sub>-C<u>H</u><sub>2</sub>-C(=O)-O-), 1.72-1.80 (m, 4H, NDI-CH<sub>2</sub>-CH<sub>2</sub>-(CH<sub>2</sub>)<sub>6</sub>-C<u>H</u><sub>2</sub>-CH<sub>2</sub>-C(=O)-O), 1.63-1.67(m, 4H, NDI-CH<sub>2</sub>-C<u>H</u><sub>2</sub>-(CH<sub>2</sub>)<sub>6</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O), 1.63-1.67(m, 4H, NDI-CH<sub>2</sub>-C<u>H</u><sub>2</sub>-(CH<sub>2</sub>)<sub>6</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O), 1.28-1.31 (m, 24H, NDI-CH<sub>2</sub>-CH<sub>2</sub>-(C<u>H<sub>2</sub>)<sub>6</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): 173.87, 159.77, 140.98, 136.23, 133.12, 129.80, 128.78, 127.09, 119.82, 65.35, 40.09, 34.42, 33.78, 32.03, 29.78, 29.44, 29.35, 29.21, 28.99, 26.70.</u>

127.09, 119.02, 03.33, 40.09, 54.42, 55.76, 52.05, 29.76, 29.44, 29.55, 29.21, 28.99, 20.

MALDI-TOF MS: m/z: 815.00 [M+Na]<sup>+</sup> (calculated); found = 838.21 [M+Na]<sup>+</sup>.

FTIR:  $\delta_{(C=O, \text{ imide})} = 1782 \text{ cm}^{-1}$ ,  $v_{(C=O, \text{ imide})} = 1717 \text{ cm}^{-1}$ ,  $\delta_{(C-H)} = 2859 \text{ cm}^{-1}$ .

#### Characterization of Intermediate for NDI-2 (OBn-Cap-BOC)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$ /ppm = 7.98 (m, 1H, C<sub>4</sub>H<sub>9</sub>-C(=O)-O-N<u>H</u>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-), 7.31-7.37 (m, 5H, C<sub>6</sub>H<sub>5</sub>-), 5.11 (s, 2H, -O-C<u>H</u><sub>2</sub>-C<sub>6</sub>H<sub>5</sub>), 3.10 (m, 2H, C<sub>4</sub>H<sub>9</sub>-C(=O)-O-NH-C<u>H</u><sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH

HRMS: m/z: 321.19 [M]<sup>+</sup> (calculated); found = 321.22 [M]<sup>+</sup>.

### Characterization of Intermediate for NDI-2 (OBn-Cap-NH<sub>2</sub>)

<sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>, 25 °C, TMS):  $\delta$ /ppm = 7.31-7.40 (m, 5H, C<sub>6</sub><u>H</u><sub>5</sub>-), 5.09 (m, 2H, <u>H</u><sub>2</sub>N-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C(=O)-O-), 2.51-2.76 (m, 2H, H<sub>2</sub>N-C<u>H</u><sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-

HRMS: m/z: 221.14  $[M]^+$ , 244.14  $[M+Na]^+$  (calculated); found = 221.19  $[M]^+$ , 244.14  $[M+Na]^+$ .



Fig. S1 <sup>1</sup>H NMR spectra of NDI-1.



Fig. S2 <sup>1</sup>H NMR spectra of NDI-2.



**Fig. S3** <sup>1</sup>H NMR spectra of **NDI-3**.



Fig. S4 <sup>13</sup>C NMR spectra of NDI-1.



Fig. S5 <sup>13</sup>C NMR spectra of NDI-2.



Fig. S6 <sup>13</sup>C NMR spectra of NDI-3.



Fig. S7 MALDI-TOF mass spectra of NDI-1.











Fig. S10 FT-IR spectra of (a) NDI-1, (b) NDI-2, (c) NDI-3.



Fig. S11 <sup>1</sup>H-NMR spectra of Boc protected benzyl ester of caproic acid.



Fig. S12 <sup>1</sup>H-NMR spectra of benzyl ester of caproic acid.



**Fig. S13** <sup>13</sup>C-NMR spectra of Boc protected benzyl ester of caproic acid.



Fig. S14 <sup>13</sup>C -NMR spectra of benzyl ester of caproic acid.



Fig. S15 HRMS spectra of Boc protected benzyl ester of caproic acid.



Fig. S16 HRMS spectra of Boc protected benzyl ester of caproic acid.

| Probes                                                                                                                | LOD                         | <b>Response type</b>                                                         | References                                                              |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Tetraphenylethylene<br>(TPE) derivative<br>(TPE-COOC <sub>6</sub> H <sub>13</sub> )                                   | 0.1 mg mL <sup>-1</sup>     | Fluorescence Turn<br>On                                                      | Sens. Actuators, B<br>2017, 238, 765-771.                               |
| Tetraphenylethylene<br>(TPE) derivative<br>(TPE-Glutamic<br>acid)                                                     | 0.13 U L <sup>-1</sup>      | Fluorescence Turn<br>On                                                      | Chem. Sci. 2017, 8, 6188-6195.                                          |
| Tetraphenylethylene<br>(TPE) derivative<br>(TPE-γ-<br>cyclodextrin)                                                   | 0.11 U L <sup>-1</sup>      | Fluorescence Turn<br>On                                                      | <i>Chem. Comm</i> <b>2019</b> , <i>55</i> , 6417-6420.                  |
| 4-cyano-4'-<br>pentylbiphenyl<br>based liquid crystal                                                                 | $0.01 \ \mu g \ mL^{-1}$    | Structural changes<br>in whishpering<br>gallery mode and<br>wavelength shift | Analyst, 2020, Advance Article.<br>(https://doi.org/10.1039/D0AN01187H) |
| 4-cyano-4'-<br>pentylbiphenyl<br>based liquid crystal<br>droplet                                                      | 0.1 μg mL <sup>-1</sup>     | Structural changes<br>of liquid droplets                                     | Liquid Crystals, 2014, 41, 597-602.                                     |
| Reduced graphene<br>oxide base<br>chemiresistor                                                                       | 6.087 U L <sup>-1</sup>     | Voltage change in the designed circuit                                       | IEEE Sens. Lett, 2018, 2, 1-4.                                          |
| Gold Nanorods<br>(AUNRs)                                                                                              | 0.017 mg mL <sup>-1</sup>   | colorimetric assay                                                           | Anal. Methods, 2019,11, 2286-2291.                                      |
| CdSe, ZnS based<br>QDs ratiometrically<br>self-assembled with<br>ester-containing<br>peptidyl substrate<br>conjugates | 0.0002 U                    | Förster resonance<br>energy transfer                                         | ACS Sens. 2020, 5, 1295-1304.                                           |
| Surface Acoustic<br>Wave Sensor<br>System                                                                             | 13 U L <sup>-1</sup>        | Conductance<br>measurement                                                   | Anal Biochem. 1995, 226, 207-211                                        |
| Naphthalene<br>diimide derivative                                                                                     | 10.0±0.8 μg L <sup>-1</sup> | Fluorescent Turn<br>Off                                                      | Present Study                                                           |

 Table S1 Table for comparison of limit of detection (LOD) of different lipase sensing probes.



**Fig. S17** AFM image of **NDI-2** ([**NDI-2**] = 20  $\mu$ M) (a) in (70:30, v/v); (b) AFM image (phase), (c) AFM image (topography) in (50:50, v/v); (d) in (1:99, v/v) DMSO-water binary solvent mixture.



**Fig. S18** Bright field images **NDI-2** in (a) (70:30, v/v), (b) (50:50, v/v) DMSO-water binary solvent mixture, (c) DLS plot of particles size distribution of **NDI-2** in (1:99, v/v) DMSO-water binary solvent mixture ([**NDI-2**] =20  $\mu$ M).



**Fig. S19** DLS measurement of **NDI-2** (20  $\mu$ M) in a) 50:50 v/v, b) 40:60 v/v c) 30:70 v/v, d) 20:80 v/v, e) 10:90 v/v, f) 1:99 v/v DMSO-water solvent composition.



Fig. S20 (a) Normalised UV-Visible spectra of NDI-2 (20  $\mu$ M) in varying DMSO-water solvent mixtures. (b) Normalised temperature dependent UV-visible spectra of NDI-2 (25  $\mu$ M) in 1:99 v/v, DMSO-water.



**Fig. S21** Solvent dependent <sup>1</sup>H-NMR of **NDI-2** from non-self-assembled state (in DMSO-d<sub>6</sub>) to self-assembled state (DMSO-d<sub>6</sub>-D<sub>2</sub>O).



**Fig. S22** Concentration-dependent emission spectra of **NDI-2** at different fraction of water  $(f_w)$ : (a)  $f_w = 30 \text{ vol}\%$ , (b)  $f_w = 50 \text{ vol}\%$ , (c)  $f_w = 99 \text{ vol}\%$ .



Fig. S23 TCSPC decay profile of NDI-2 with 360 nm excitation in different solvent compositions of DMSO-water.



Fig. S24 Ratio of (a) absorbance value, (b) fluorescence intensity over time for NDI-2 FONP at  $f_w = 99$  vol% in DMSO.



Fig. S25 UV-vis spectra of NDI-2 (0-30  $\mu$ M) in (a) presence of 0.5 mg L<sup>-1</sup> CV lipase and (b) absence of lipase.



Fig. S26 Normalised (with respect to 385 nm) UV-vis spectra of NDI-2 (0-30  $\mu$ M) in presence of 0.5 mg L<sup>-1</sup> CV lipase.



Fig. S27 Mass Fragment of NDI-2 after treament with CV lipase.



**Fig. S28** (a) Fluorescence spectra of **NDI-2** FONPs (10  $\mu$ M) in absence and presence of varying concentration of CV lipase (excitation wavelength =350 nm), (b) Stern-Volmer plot of CV lipase doped in (1:99, v/v) DMSO-water solution of **NDI-2** (10  $\mu$ M), (c) fluorescence response of **NDI-2** FONPs towards CV lipase sensing with varying concentration of lipase in (1:99, v/v) DMSO-water ([**NDI-2**] =10  $\mu$ M).



**Fig. S29** (a) Time dependent fluorescence spectra of **NDI-2** in (1:99, v/v) DMSO-water solution doped with CV lipase. (b) Variation of fluorescence Intensity of **NDI-2** in (1:99, v/v) DMSO-water doped with CV lipase with time.



Fig. S30 Fluorescence spectra of NDI-2 FONPs (25  $\mu$ M) in presence of varying concentration of CV lipase (excitation wavelength = 350 nm) and ammonium sulphate (25  $\mu$ M).



Fig. S31 Fluorescence spectra of NDI-2 FONPs prepared from (1:99, v/v) DMSO-water in presence of diluted human serum.